导航:首页 > 解决方法 > 不等式错误的解决方法

不等式错误的解决方法

发布时间:2023-01-01 10:21:01

A. 高中数学不等式证明的八种方法

不等式证明知识概要

河北/赵春祥

不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径在于熟练掌握不等式的性质和一些基本不等式,灵活运用常用的证明方法。

一、要点精析

1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。

(1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。

(2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。

2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用分析法证明AB的逻辑关系为:BB1B1 B3 … BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件。

4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法。

5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑三角代换,将两个变量都有同一个参数表示。此法如果运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ,y=sinθ;②若x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);③对于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。

6.放缩法放缩法是要证明不等式A<B成立不容易,而借助一个或多个中间变量通过适当的放大或缩小达到证明不等式的方法。放缩法证明不等式的理论依据主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(分母)异分母(分子)的两个分式大小的比较。常用的放缩技巧有:①舍掉(或加进)一些项;②在分式中放大或缩小分子或分母;③应用均值不等式进行放缩。

二、难点突破

1.在用商值比较法证明不等式时,要注意分母的正、负号,以确定不等号的方向。

2.分析法与综合法是对立统一的两个方面,前者执果索因,利于思考,因为它方向明确,思路自然,易于掌握;后者是由因导果,宜于表述,因为它条理清晰,形式简洁,适合人们的思维习惯。但是,用分析法探求证明不等式,只是一种重要的探求方式,而不是一种好的书写形式,因为它叙述较繁,如果把“只需证明”等字眼不写,就成了错误。而用综合法书写的形式,它掩盖了分析、探索的过程。因而证明不等式时,分析法、综合法常常是不能分离的。如果使用综合法证明不等式,难以入手时常用分析法探索证题的途径,之后用综合法形式写出它的证明过程,以适应人们习惯的思维规律。还有的不等式证明难度较大,需一边分析,一边综合,实现两头往中间靠以达到证题的目的。这充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系。分析的终点是综合的起点,综合的终点又成为进一步分析的起点。

3.分析法证明过程中的每一步不一定“步步可逆”,也没有必要要求“步步可逆”,因为这时仅需寻找充分条件,而不是充要条件。如果非要“步步可逆”,则限制了分析法解决问题的范围,使得分析法只能使用于证明等价命题了。用分析法证明问题时,一定要恰当地用好“要证”、“只需证”、“即证”、“也即证”等词语。

4.反证法证明不等式时,必须要将命题结论的反面的各种情形一一加以导出矛盾。

5.在三角换元中,由于已知条件的限制作用,可能对引入的角有一定的限制,应引起高度重视,否则可能会出现错误的结果。这是换元法的重点,也是难点,且要注意整体思想的应用。

6.运用放缩法证明不等式时要把握好“放缩”的尺度,即要恰当、适度,否则将达不到预期的目的,或得出错误的结论。另外,是分组分别放缩还是单个对应放缩,是部分放缩还是整体放缩,都要根据不等式的结构特点掌握清楚。

(摘自:《考试报·高二数学版》2004年/07月/20日)

1、比较法(作差法)
在比较两个实数 和 的大小时,可借助 的符号来判断。步骤一般为:作差——变形——判断(正号、负号、零)。变形时常用的方法有:配方、通分、因式分解、和差化积、应用已知定理、公式等。
例1、已知: , ,求证: 。
证明: ,故得 。
2、分析法(逆推法)
从要证明的结论出发,一步一步地推导,最后达到命题的已知条件(可明显成立的不等式、已知不等式等),其每一步的推导过程都必须可逆。
例2、求证: 。
证明:要证 ,即证 ,即 , , , , ,由此逆推即得 。
3、综合法
证题时,从已知条件入手,经过逐步的逻辑推导,运用已知的定义、定理、公式等,最终达到要证结论,这是一种常用的方法。
例3、已知: , 同号,求证: 。
证明:因为 , 同号,所以 , ,则 ,即 。
4、作商法(作比法)
在证题时,一般在 , 均为正数时,借助 或 来判断其大小,步骤一般为:作商——变形——判断(大于1或小于1)。
例4、设 ,求证: 。
证明:因为 ,所以 , 。而 ,故 。
5、反证法
先假设要证明的结论不对,由此经过合理的逻辑推导得出矛盾,从而否定假设,导出结论的正确性,达到证题的目的。
例5、已知 , 是大于1的整数,求证: 。
证明:假设 ,则 ,即 ,故 ,这与已知矛盾,所以 。
6、迭合法(降元法)
把所要证明的结论先分解为几个较简单部分,分别证明其各部分成立,再利用同向不等式相加或相乘的性质,使原不等式获证。
例6、已知: , ,求证: 。
证明:因为 , ,
所以 , 。
由柯西不等式
,所以原不等式获证。
7、放缩法(增减法、加强不等式法)
在证题过程中,根据不等式的传递性,常采用舍去一些正项(或负项)而使不等式的各项之和变小(或变大),或把和(或积)里的各项换以较大(或较小)的数,或在分式中扩大(或缩小)分式中的分子(或分母),从而达到证明的目的。值得注意的是“放”、“缩”得当,不要过头。常用方法为:改变分子(分母)放缩法、拆补放缩法、编组放缩法、寻找“中介量”放缩法。
例7、求证: 。
证明:令 ,则

所以 。
8、数学归纳法
对于含有 的不等式,当 取第一个值时不等式成立,如果使不等式在 时成立的假设下,还能证明不等式在 时也成立,那么肯定这个不等式对 取第一个值以后的自然数都能成立。
例8、已知: , , ,求证: 。
证明:(1)当 时, ,不等式成立;
(2)若 时, 成立,则

= ,
即 成立。
根据(1)、(2), 对于大于1的自然数 都成立。
9、换元法
在证题过程中,以变量代换的方法,选择适当的辅助未知数,使问题的证明达到简化。
例9、已知: ,求证: 。
证明:设 , ,则 ,

(因为 , ),
所以 。
10、三角代换法
借助三角变换,在证题中可使某些问题变易。
例10、已知: , ,求证: 。
证明:设 ,则 ;设 ,则
所以 。
11、判别式法
通过构造一元二次方程,利用关于某一变元的二次三项式有实根时判别式的取值范围,来证明所要证明的不等式。
例11、设 ,且 ,求证: 。
证明:设 ,则
代入 中得 ,即
因为 , ,所以 ,即 ,
解得 ,故 。
12、标准化法
形如 的函数,其中 ,且
为常数,则当 的值之间越接近时, 的值越大(或不变);当 时, 取最大值,即

标准化定理:当A+B为常数时,有 。
证明:记A+B=C,则

求导得 ,由 得C=2A,即A=B
又由 知 的极大值点必在A=B时取得
由于当A=B时, ,故得不等式。
同理,可推广到关于 个变元的情形。
例12、设A,B,C为三角形的三内角,求证: 。
证明:由标准化定理得,当A=B=C时, ,取最大值 ,故 。
13、等式法
应用一些等式的结论,可以巧妙地给出一些难以证明的不等式的证明。
例13(1956年波兰数学竞赛题)、 为 的三边长,求证:

证明:由海伦公式 ,
其中 。
两边平方,移项整理得

而 ,所以 。
14、函数极值法
通过变换,把某些问题归纳为求函数的极值,达到证明不等式的目的。
例14、设 ,求证: 。
证明:
当 时, 取最大值 ;
当 时, 取最小值-4。
故 。
15、单调函数法
当 属于某区间,有 ,则 单调上升;若 ,则 单调下降。推广之,若证 ,只须证 及 即可, 。
例15、 ,求证: 。
证明:当 时, ,而

故得 。
16、中值定理法
利用中值定理: 是在区间 上有定义的连续函数,且可导,则存在 , ,满足 来证明某些不等式,达到简便的目的。
例16、求证: 。
证明:设 ,则
故 。
17、分解法
按照一定的法则,把一个数或式分解为几个数或式,使复杂问题转化为简单易解的基本问题,以便分而治之,各个击破,从而达到证明不等式的目的。
例17、 ,且 ,求证: 。
证明:因为

所以 。
18、构造法
在证明不等式时,有时通过构造某种模型、函数、恒等式、复数等,可以达到简捷、明快、以巧取胜的目的。
例18、已知: , ,求证: 。
证明:依题设,构造复数 , ,则 ,
所以

故 。
19、排序法
利用排序不等式来证明某些不等式。
排序不等式:设 , ,则有
,其中 是 的一个排列。当且仅当 或 时取等号。
简记作:反序和 乱序和 同序和。
例19、求证: 。
证明:因为 有序,所以根据排序不等式同序和最大,即 。
20、几何法
借助几何图形,运用几何或三角知识可使某些证明变易。
例20、已知: ,且 ,求证: 。
证明:以 为斜边, 为直角边作
延长AB至D,使 ,延长AC至E,使 ,过C作AD的平行线交DE于F,则 ∽ ,令 ,
所以
又 ,即 ,所以 。

另外,还可以利用重要的不等式来证题,如平均不等式、柯西(Cauchy)不等式、琴生(Jensen)不等式、绝对值不等式、贝努利(J.Bernoulli)不等式、赫尔德(O.HÖlder)不等式、三角形不等式、闵可夫斯基(H.Minkowski)不等式等,这里不再烦述了。
在实际证明中,以上方法往往相互结合、互相包含,证题时,可能同时运用几种方法,结合起来加以证明。

参考文献
[1]李玉琪主编•初等代数研究•北京:中国矿业大学出版社,1993
[2]方初宝等编•数学猜想法浅谈•重庆:科技文献出版社重庆分社,1988
[3]吴德风•不等式与线性规划初步•北京:科学普及出版社,1983

B. 如何解决基本不等式

基本不等式的形式为:a+b>=2√ab(等号成立的条件:当且仅当a=b时),因此运用基本不等式时,主要是为了解决最值问题!当遇上a+b或两数相加的形式的时候,题目有要求是求最小值,就用a+b>=2√ab(等号成立的条件:当且仅当a=b时),当遇上√ab或两数乘积的时候,题目有要求是求最大值也用a+b>=2√ab。但,基本不等式有时会推广开来,比如比较典型的:(1)a^3+b^3+c^3>=3abc(等号成立的条件:当且仅当a=b=c时),(2)(a1+a2+a3+...)/n>=(a1a2a3...)开n次方,(等号成立的条件:当且仅当a1=a2=a3=...时),(3)a+1/a>=2(等号成立的条件:当且仅当a=1/a时)且a属于正实数,(4)a+1/a<=-2(等号成立的条件:当且仅当a=1/a时)且a属于负实数,((3)和(4)变成f(x)=x+1/x时,函数的图像叫做v形函数)(5)b/a+a/b>=2(等号成立的条件:当且仅当a=b时)
且a,b同号(6)a^2+b^2+c^2>=ab+bc+ac(等号成立的条件:当且仅当a=b=c时)

你可以问问老师,基本不等式,说难不难,说易不易,你要认真学,应为这是很有用的(在解大题的时候)!当碰到很难的题,就干脆使用导数,求出单调性,比较得最值!

C. 解不等式技巧

(1)解一元一次不等式和解一元一次方程相类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号的方向必须改变。

(2)解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分,就得到不等式组的解集。

列一元一次不等式(组)解决实际问题,掌握解不等式应用题的步骤:

(1)找出实际问题的不等关系,设定未知数,列出不等式(组);

(2)解不等式(组);

(3)从不等式组的解集中求出符合题意的答案。
、一元一次方程的解法及其解的三种情况:


(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1;

(2)最简一元一次方程ax=b的解有以下三种情况:

①当 a≠0时,方程有且仅有一个解;

②当 a=0,b≠0时,方程无解;

③当 a=0,b=0时,方程有无穷多个解.
其他
数学的解题方法是随着对数学对象的研究的深入而发展起来的。六年级的同学们很快就要小学毕业,中学的大门已经向我们敞开。为了能进一步学好数学,有必要掌握初中数学的特点尤其是解题方法。 下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。同样这些方法也能给你们现在的学习有些帮助。请同学们把它作为资料好好保存,当然,以后全部学会弄懂,保存大脑当中再好不过了。
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

作者: 菁菁9383 2006-5-24 16:39 回复此发言

--------------------------------------------------------------------------------

2 初中数学解题方法
8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。
希望能对您有所帮助

D. 基本不等式的解题方法与技巧

基本不等式的解题方法与技巧如下:

解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:

(1)分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

(2)零点分段讨论法:适用于含一个字母的多个绝对值的情况。

整式不等式:

整式不等式两边都是整式(即未知数不在分母上)。

一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3-x>0

同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。

E. 不等式的两种解法,答案不一样,帮我看看哪里错了。

解:第一种解法错误,第一种解法只能证明2a^2+b^2-2根号2ab有最小值与2a^2+b^2最小值无关。

F. 不等式的解题方法与技巧

基本不等式题型及解题方法:解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。

(1)分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

(2)零点分段讨论法:适用于含一个字母的多个绝对值的情况。

(3)两边平方法:适用于两边非负的方程或不等式。

(4)几何意义法:适用于有明显几何意义的情况。

两大技巧

“1”的妙用。题目中如果出现了两个式子之和为常数,要求这两个式子的倒数之和的最小值,通常用所求这个式子乘以1,然后把1用前面的常数表示出来,并将两个式子展开即可计算。如果题目已知两个式子倒数之和为常数,求两个式子之和的最小值,方法同上。

G. 不等式的解题方法与技巧有哪些

高中数学不等式一般常考的主要有两个:基本不等式和绝对值不等式。尤其是基本不等式:几何平均值<=算术平均值。注意到“一正”,“二定”,“三相等”,一般用采用拼凑法或待定系数法来构造满足条件的两项或三项,使其乘积为一定值。

不等式的解题方法与技巧

解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:

(1)分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

(2)零点分段讨论法:适用于含一个字母的多个绝对值的情况。

(3)两边平方法:适用于两边非负的方程或不等式。

(4)几何意义法:适用于有明显几何意义的情况。

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

不等式的概念

一般地,用纯粹的大于号“>”、小于号“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。

其中,两边的解析式的公共定义域称为不等式的定义域。

整式不等式:

整式不等式两边都是整式(即未知数不在分母上)。

一元一次不等式:含有一个未知数(即一元),并且未知数的次数是1次(即一次)的不等式。如3- x >0

同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式。

H. 高中不等式解题方法与技巧

高中不等式的解题方法与技巧如下:

一、解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:

1、分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

2、零点分段讨论法:适用于含一个字母的多个绝对值的情况。

3、两边平方法:适用于两边非负的方程或不等式。

4、几何意义法:适用于有明显几何意义的情况。

5、待定系数法:是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

3、一元一次不等式:含有一个未知数(即一元)并且未知数的次数是1次(即一次)的不等式。如3-x>0

同理,二元一次不等式:含有两个未知数(即二元),并且未知数的次数是一次的不等式。

三、总结:

高中掌握以上概念与方法,相信你会学好不等式!

I. 告诉我这两道分式不等式该怎么解决

分式不等式最难的也是最容易出错的就是去分母,因为大部分分母不知道正负,去错了不等式符号就变了(所以这是第一步),在这就是始终记得分母不为0这个隐藏条件一定要解出来。这两道题很简单,首先把右边变为0,再通分即可。我帮你做一道
(x+1)/2x+4)≥1,得到(x+1)/2x+4)-1≥0,即(-x-3)/2(x+2)≥0,所以根据分式解法,原不等式等价于1)(-x-3)*2(x+2)≥0(两个数相除大于0,这两个数必定同号)2)2x+4≠0这两个式子,解得1)-3≤x≤-2,2)x≠-2,所以结果为-3≤x<-2
第二题你练练 这是基本题 没有任何难度 呵呵呵

J. 高中不等式解题方法与技巧

1、解决绝对值问题(化简、求值、方程、不等式、函数),把含绝对值的问题转化为不含绝对值的问题。具体转化方法有:

(1)分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

(2)零点分段讨论法:适用于含一个字母的多个绝对值的情况。

(3)两边平方法:适用于两边非负的方程或不等式。

(4)几何意义法:适用于有明显几何意义的情况。

2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

3、利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、解某些复杂的特型方程要用到:换元法。换元法解方程的一般步骤是:

5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

阅读全文

与不等式错误的解决方法相关的资料

热点内容
桂圆珍珠粉的食用方法 浏览:520
如何保护视力最有效的方法 浏览:342
避孕膜的使用方法视频 浏览:976
解读数学教材研讨教学方法 浏览:633
妄想性障碍的治疗方法 浏览:714
截屏的方法手机 浏览:303
面粉做蛋糕发酵方法与步骤 浏览:332
华为手机的悬浮窗的便捷方法 浏览:694
八年级上册昆虫记教学方法 浏览:37
直播管理的方法和技巧 浏览:49
敏感度比较高的hpv检测方法 浏览:123
太阳能路灯灯头的连接方法 浏览:414
结石用什么方法最快排出 浏览:560
中药人参的的作用及食用方法 浏览:21
三洋使用方法 浏览:178
小米5开关机时间设置在哪里设置方法 浏览:763
怎么让腿变快的方法 浏览:173
易企秀手机版使用方法怎么保存 浏览:696
戒烟自由的最佳方法 浏览:440
70迈停车监控线连接方法 浏览:910