⑴ 统计学中的分类方法
介绍
理解不同的数据类型,是探索性数据分析(Exploratory Data Analysis,EDA)所需的关键预备知识,同时也有助于你选择正确的可视化方法。你可以将数据类型看成归类不同类型变量的方式。我们将讨论主要的变量类型,以及相应的示例。有时我们会称其为测量尺度(measurement scale)。
类别数据
类别数据(categrorical data)表示特性,例如一个人的性别,所说的语言,等等。类别数据同样可以使用数值(例如:1表示雌性,0表示雄性)。
名目数据
名目值(nominal value)指用于标记变量的定性离散单元。你可以直接把它们想象成“标签”。注意名目数据是无序的。因此,如果你改变名目值的顺序,其语义并不会改变。下面是一些名目特征的例子:
性别:雌性、雄性。
语言:英语、法语、德语、西班牙语。
上面的性别特征也被称为“二分(dichotomous)”值,因为它只包含两个类别。
次序数据
次序值(ordinal value)指离散、有序的定性单元。除了有序之外,它几乎和名目数据一样。例如,教育背景可以用次序值来表示:
初中
高中
大学
研究生
注意,其实初中、高中之间的差别,和高中、大学之间的差别,是不一样的。这是次序数据的主要限制,次序值之间的差别是未知的。因此,次序值通常用于衡量非数值特征,例如愉悦程度、客户满意度。
数值数据
离散数据
离散数据(discrete data)的值是不同而分散的,换句话说,只能接受一些特定值。这类数据无法测量但可以计数。它基本上用来表示可以分类的信息。例如,抛100次硬币正面向上的次数。
你可以通过以下两个问题检查你处理的是否是离散数据:你可以对其计数吗?它可以被切分成越来越小的部分吗?
相反,如果数据可以测量但无法计数,那就是连续数据。
连续数据
连续数据(continuous data)表示测量。例如身高。
连续数据可以分为等距数据(interval data)和等比数据(ratio data)。
等距值指间隔相等的有序单元,也就是说,等距变量包含有序数值,并且我们知道这些数值之间的间隔。例如,用等距数据表示温度:
-10
-5
0
+5
+10
+15
等距值的问题在于,它们没有“真正的零”。拿上面的例子来说,0度不是绝对零度。另外,我们可以加减等距值,而不能乘除等距值或计算比率。由于没有“真正的零”,无法应用许多描述统计学或推论统计学的方法。
等比值具有等距值的所有特性,同时也有绝对的零。因此,不仅可以加减,还可以乘除。高度、重量、长度、绝对温度等都属于等比值。
数据类型为什么重要?
数据类型是一个非常重要的概念,因为统计学方法只能应用于特定的数据类型。你需要使用不同的方式分析连续数据和类别数据。因此,理解你处理的数据的类型,让你能够选择正确的分析方法。
下面我们将重新查看上面提到的每种数据类型,了解它们可以应用什么样的统计学方法。为了理解我们将讨论的一些性质,你需要对描述性统计学有所了解。如果你对此不熟悉,可以先看下我写的描述性统计学介绍。
统计学方法
名目数据
处理名目数据时,你通过下述方式收集信息:
频数 在一段时间内或整个数据集中出现的次数。
比例 频数除以所有事件的频数之和,即可得到比例。
百分比 我想这无需解释了吧。
众数 出现次数最多,也就是频数最高的数据。
可视化方法 你可以使用饼图或直方图可视化名目数据。
统计学常用数据类型
左:饼图;右:直方图
次序数据
当你处理次序数据时,你可以使用以上用于名目数据的方法,不过,除此之外,你还可以使用一些额外的工具。也就是说,你可以使用频数、比例、百分比、众数概括次序数据,也可以使用饼图、直方图可视化次序数据。除此之外,你还可以使用:
百分位数 计算由小到大排列的次序数据的累计百分位,某一百分位对应的数据值就称为这一百分位的百分位数。百分位数可以用来描述数据的离散趋势。
中位数 即第50百分位数,它将数据分为相等的上下两部分。中位数可以用来描述数据的中间趋势。例如,如果我们用次序数据表示星巴克咖啡的容量:中杯、大杯、特大杯。那么,其中位数为大杯(也就是说,真正的中杯是大杯)。
四分位距 第75百分位数与第25百分位数之差即为四分位距。四分位距可以简要概述数据的离散趋势。
连续数据
大多数统计学方法都可以用于连续数据。你可以使用百分位数、中位数、四分位距、均值、众数、标准差、区间。
你可以使用矩形图或箱形图可视化连续数据。从矩形图上可以看到分布的中间趋势、离散程度、形态和峰态。注意,矩形图不体现离散值,因此我们有时使用箱形图。
⑵ 常用的统计方法
常用的数据统计方法与工具
统计方法:
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。
因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反复法。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显着性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显着影响的变量。这个 还需要具体问题具体分析。
统计工具:
一、 SAS统计软件
SAS 是英文Statistical Analysis System的缩写,翻译成汉语是统计分析系统,最初由美国北卡罗来纳州立大学两名研究生开始研制,1976 年创立SAS公司, 2003年全球员工总数近万人,统计软件采用按年租用制,年租金收入近12亿美元。SAS系统具有十分完备的数据访问、数据管理、数据分析功能。 在国际上, SAS被誉为数据统计分析的标准软件。SAS系统是一个模块组合式结构的软件系统,共有三十多个功能模块。SAS是用汇编语言编写而成的,通常使用SAS 需要编写程序, 比较适合统计专业人员使,而对于非统计专业人员学习SAS比较困难。SAS最新版为9.0版。网址:http://www.sas.com/。
SAS是美国SAS(赛仕)软件研究所研制的一套大型集成应用软件系统,具有比较完备的数据存取、数据管理、数据分析和数据展现的系列功能。尤其是它的创业产品—统计分析系统部分,由于具有强大的数据分析能力,一直是业界中比较着名的应用软件,在数据处理方法和统计分析领域,被誉为国际上的标准软件和最具权威的优秀统计软件包,SAS系统中提供的主要分析功能包括统计分析、经济计量分析、时间序列分析、决策分析、财务分析和全面质量管理工具等。
SAS系统是一个组合的软件系统,它由多个功能模块配合而成,其基本部分是BASE SAS模块。BASE SAS模块是SAS系统的核心,承担着主要的数据管理任务,并管理着用户使用环境,进行用户语言的处理,调用其他SAS模块和产品。也就是说,SAS系统的运行,首先必须启动BASE SAS模块,它除了本身所具有数据管理、程序设计及描述统计计算功能以外,还是SAS系统的中央调度室。它除了可单独存在外,也可与其他产品或模块共同构成一个完整的系统。各模块的安装及更新都可通过其安装程序比较方便地进行。
SAS系统具有比较灵活的功能扩展接口和强大的功能模块,在BASE SAS的基础上,还可以增加如下不同的模块而增加不同的功能:SAS/STAT(统计分析模块)、SAS/GRAPH(绘图模块)、SAS/QC(质量控制模块)、SAS/ETS(经济计量学和时间序列分析模块)、SAS/OR(运筹学模块)、SAS/IML(交互式矩阵程序设计语言模块)、SAS /FSP(快速数据处理的交互式菜单系统模块)、SAS/AF(交互式全屏幕软件应用系统模块)等等。
SAS提供的绘图系统,不仅能绘各种统计图,还能绘出地图。SAS提供多个统计过程,每个过程均含有极丰富的任选项。用户还可以通过对数据集的一连串加工,实现更为复杂的统计分析。此外,SAS还提供了各类概率分析函数、分位数函数、样本统计函数和随机数生成函数,使用户能方便地实现特殊统计要求。
目前SAS软件对Windows和Unix两种平台都提供支持,最新版本分别为8.X和6.X。与以往的版本比较,6.X版的SAS系统除了在功能和性能方面得到增加和提高外,GUI界面也进一步加强。在6.12版中,SAS系统增加了一个PC平台和三个新的UNIX平台,使SAS系统这一支持多硬件厂商,跨平台的大家族又增加了新成员。SAS 6.12的另一个显着特征是通过对ODBC、OLE和MailAPIs等业界标准的支持,大大加强了SAS系统和其它软件厂商的应用系统之间相互操作的能力,为各应用系统之间的信息共享和交流奠定了坚实的基础。
虽然在我国SAS的逐步应用还是近几年的事,但是随着计算机应用的普及和信息事业的不断发展,越来越多的单位采用了SAS软件。尤其在教育、科研领域等大型机构,SAS软件已成为专业研究人员实用的进行统计分析的标准软件。
然而,由于SAS系统是从大型机上的系统发展而来,其操作至今仍以编程为主,人机对话界面不太友好,系统地学习和掌握SAS,需要花费一定的精力。而对大多数实际部门工作者而言,需要掌握的仅是如何利用统计分析软件来解决自己的实际问题,因此往往会与大型SAS软件系统失之交臂。但不管怎样,SAS作为专业统计分析软件中的巨无霸,现在鲜有软件在规模系列上与之抗衡。
二、 SPSS统计软件
SPSS是英文Statistical package for the social science 的缩写,翻译成汉语是社会学统计程序包,20世纪60年代末由美国斯坦福大学的三位研究生研制,1975年在芝加哥组建SPSS总部。SPSS系统特点是操作比较方便,统计方法比较齐全,绘制图形、表格较有方便,输出结果比较直观。SPSS是用FORTRAN语言编写而成。适合进行从事社会学调查中的数据分析处理。最新版为13.0版。网址:http://www.spss.com/。
SPSS原名社会科学统计软件包,现已改名为统计解决方案服务软件。是世界着名的统计分析软件之一。
20世纪60年代末,美国斯坦福大学的三位研究生研制开发了最早的统计分析软件SPSS,同时成立了SPSS公司,并于1975年在芝加哥组建了 SPSS总部。20世纪80年代以前,SPSS统计软件主要应用于企事业单位。1984年SPSS总部首先推出了世界第一套统计分析软件微机版本 SPSS/PC+,开创了SPSS微机系列产品的先河,从而确立了个人用户市场第一的地位。
同时SPSS公司推行本土化策略,目前已推出9个语种版本。SPSS/PC+的推出,极大地扩充了它的应用范围,使其能很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据深入分析、使用灵活方便、功能设计齐全等方面给予了高度的评价与称赞。目前已经在国内广泛流行起来。它使用Windows的窗口方式展示各种管理和分析数据方法的功能,使用对话框展示出各种功能选择项,只要是掌握一定的 Windows操作技能,粗通统计分析原理,就可以使用该软件进行各种数据分析,为实际工作服务。
SPSS for Windows是一个组合式软件包,目前已经开发出SPSS12版本,它集数据整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,有利于该软件的推广应用。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程,比如回归分析中又分线性回归分析、曲线估计、Logistic回归、Probit回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS也有专门的绘图系统,可以根据数据绘制各种统计图形和地图。
SPSS for Windows的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种操作系统的计算机上,最新的版采用 DAA(Distributed Analysis Architecture,分布式分析系统),全面适应互联网,支持动态收集、分析数据和HTML格式报告,领先于诸多竞争对手。
方便易用是SPSS for Windows的主要优点,同时也是SPSS不够全面的原因所在。
三、 BMDP统计软件
BMDP是英文Biomedical computer programs 的缩写,翻译成汉语是生物医学计算程序,美国加州大学于1961年研制,是世界上最早的统计分析软件。特点是统计方法齐全,功能强大。但1991年的 7.0版后没有新的版本推出,使用不太普及,最后被SPSS公司收购。
四、 Stata统计软件
Stata统计软件由美国计算机资源中心(Computer Resource Center)1985年研制。 特点是采用命令操作,程序容量较小,统计分析方法较齐全,计算结果的输出形式简洁,绘出的图形精美。不足之处是数据的兼容性差,占内存空间较大,数据管理功能需要加强。最新版为8.0版。网址:http://www.stata.com/。
五、 EPINFO软件
EPINFO是英文Statistics program for epidemiology on microcomputer 的缩写,翻译成汉语是流行病学统计程序。美国疾病控制中心CDC和WHO共同研制,为完全免费软件。特点是数据录入非常直观,操作方便,并有一定的统计功能,但方法比较简单,主要应用于流行病学领域中的数据录入和管理工作。最新版为Epidata 2.0版及EPINFO2000版。
六、 Minitab
Minitab由美国宾州大学研制。其特点是简单易懂,很方便进行试验设计及质量控制功能。在国外大学统计学系开设的统计软件课程中,Minitab与SAS、BMDP并列,根据没有SPSS的份。最新版本为14.0版,网址:http://www.minitab.com/。
七、 Statistica
Statistica为一套完整的统计资料分析、图表、资料管理、应用程式发展系统;美国StatSoft公司开发。能提供使用者所有需要的统计及制图程序,制图功能强大,能够在图表视窗中显示各种统计分析和作图技术。
八、 SPLM统计软件
SPLM是英文Statistical program for linear modeling 的缩写,翻译成汉语是线性模型拟合统计软件程序。1988年由解放军第四医学大学统计教研室研制。系统特点是采用线性模型的方法,实现各种统计方法的计算。统计方法比较齐全,功能比较强大。SPLM采用FORTRAN语言编写完成。但1999年推出3.0版后无新的产品推出。
九、 CHISS统计软件
CHISS 是英文Chinese High Intellectualized Statistical Software的缩写,翻译成汉语是中华高智统计软件, 由北京元义堂科技公司研制,解放军总医院、首都医科大学、中国中医研究院等参加协作完成。1997年开始研发,2001年推出第一版。CHISS是一套具有数据信息管理、图形制作和数据分析的强大功能,并具有一定智能化的中文统计分析软件。CHISS的主要特点是操作简单直观,输出结果简洁。既可以采用光标点菜单式也可采用编写程序来完成各种任务。CHISS用C++语言、 FORTRAN语言和delphi 开发集成,采用模块组合式结构,已开发十个模块。 CHISS可以用于各类学校、科研所等从事统计学的教学和科研工作。最新版为CHISS2004版。网址:http://www.chiss.cn。
十、 SASD统计软件
SASD是英文package for Statistical analysis of stochastic data 的缩写,翻译成汉语是随机数据统计分析程序包。它是由中国科学院计算中心研制。系统特点是以FORTRAN源程序形式向用户提供大量的子程序可供用户进行二次开发,统计方法比较齐全,功能比较强大。SASD采用FORTRAN语言编写完成,比较适合从事统计专业人员使用。但无新版推出。
十一、 PEMS统计软件
PEMS是英文package for encyclopaedia of medical statistics汉语是中国医学网络全书-医学统计学软件包。它以<中国医学网络全书>一书为蓝本,开发的一套统计软件。系统特点是实现各种统计方法的计算。统计方法比较齐全,功能比较强大。PEMS采用TURBOC和TURBOBASIC语言编写完成,比较适合从事医学工作的非统计专业人员使用。最新版为PEMS3.0版。网址:http://www.pems888.com/。
十二、 EXCEL电子表格与统计功能
EXCEL电子表格是Microsoft公司推出的Office系列产品之一,是一个功能强大的电子表格软件。特点是对表格的管理和统计图制作功能强大,容易操作。Excel的数据分析插件XLSTAT,也能进行数据统计分析,但不足的是运算速度慢,统计方法不全。
十三、 DAS统计软件
DAS是英文Drug and Statistics的缩写,翻译成汉语是药理学计算软件,由孙瑞元等开发。特点是内容涵盖基础药理学、临床药理学,药学,医学统计学。能多种处理结果同时显现。EXCEL平台使用方便,智能化,图表直接插入文档。网址:http://www.drugchina.net/。
十四、 SDAS统计软件
DAS是英文Statisticaldesign and analysis system的缩写,翻译成汉语是统计设计和分析系统。1992年由解放军总医院医学统计教研室开发。特点是窗口操作,操作方便,图表简明,与国内医学统计学教材一致。但只有DOS版,1995年后没新的版本。
十五、 Nosa统计软件
Nosa是非典型数据分析系统,1999年由解放军四军医大学医学统计教研室夏结来教授开发。特点是采用广义线性模型建模,从数据录入与管理、统计分析、绘图,到结果管理嵌入了当代数据处理技术。但只有DOS系统下使用。
十六 S-PLUS(此部分摘自厂家的软件宣传资料)
Insightful公司是世界着名的商务智能软件提供商,产品涵盖分析统计、数据挖掘、知识获取、决策支持等多个领域。公司总部设在美国西雅图。
S-PLUS作为一个工业数据分析工具与数据分析应用开发平台,在各行各业已经有较长的使用历史。并曾获得着名的“美国计算机协会优秀软件奖。
S-PLUS提供了方便、灵活、交互、可视化的操作环境,帮助您找出数据之间的关系和趋势,让您做出更好地决策。在科学研究、市场营销、产品研发、质量保证、财务分析、金融证券、资料统计等各个方面,S-PLUS都有广泛的应用。
S-PLUS有流畅、直观的操作界面,广泛的输入输出功能,不论您的数据在何处、数据的格式如何,都可以轻松地存取,生成的结果可以以任意格式进行输出 (图形、文档、表格、网页)。特别是:S-PLUS的操作界面与Microsoft Office完全一致,用鼠标轻松点击,就可以把S-PLUS 的分析结果嵌入到Word文档和PowerPoint文档中;S-PLUS与Excel无缝集成,您可以在S-PLUS 环境中随意操作Excel数据,也可以在Excel环境中使用S-PLUS功能,无需花时间在Excel及S-PLUS之间,将数据来回转换;S- PLUS可以在Internet环境中进行数据分析和结果发布。
S-PLUS领先于业界的探索式图形技术,使得您可以直观地展现隐藏在数据中的关系和趋势,不致迷失在简单的统计数值及文字报表中。S-PLUS提供超过80种的二维和三维图形库,您可以轻松修改每一层图形的细节,包括线条、颜色、字体等,产生您想要的图形。
S-PLUS提供超过4200种统计分析函数,包含了传统和现代的统计分析、数据挖掘、预测分析的算法。软件所有的分析功能都是向导式的,使您轻松完成数据的分析任务。S-PLUS的开放性,允许您自己开发新的算法,集成到S-PLUS软件中。您也可以从S-PLUS网站或者其它统计网站上免费下载算法,集成到S-PLUS软件中。
通过S-PLUS的脚本语言,可以记录和存储分析过程;或者,用鼠标拖拉对象(如按钮、菜单等等)到命令窗口,会立即产生相应的执行指令;反之,拖拉指令到工具列上,会产生相应的功能按钮。使得您的分析过程可以进行存储、共享和重复执行,大大减少您的重复工作量。
S-PLUS还提供强大的编程语言——S语言,您可以使用它来开发专门适合于您的个性化系统,也可以建立企业级的应用系统。而且,S-PLUS几乎可以集成到其它任何系统中,如:在Unix系统上,S-PLUS的CONNECT/Java接口,可以让S-PLUS集成到Java程序中。在Windows系统上,S-PLUS的CONNECT/C++接口,可以在您开发的C++程序内使用全部的S-PLUS分析方法。另外S-PLUS的DDE及OLE接口,可以让您集成S-PLUS到其他Windows应用程序中,允许您从Excel或Visual Basic应用程序中执行S-PLUS功能。
⑶ 数理统计方法有哪些
1、统计表
统计表是反映统计资料的表格。是对统计指标加以合理叙述的形式,它使统计资料条理化,简明清晰,便于检查数字的完整性和准确性,以及对比分析。
统计表从形式上看,由标题、横行、纵栏、数字等部分所组成。从内容上看,由主辞和宾辞两部分所组成。
主辞是统计表所要说明的对象,是由总体、总体各组、总体各单位的名称所构成。宾辞是说明主辞的统计指标的名称及数字资料。
2、统计图
统计图是根据统计数字,用几何图形、事物形象和地图等绘制的各种图形。它具有直观、形象、生动、具体等特点。
统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。因此,统计图在统计资料整理与分析中占有重要地位,并得到广泛应用。
在解答资料分析测验中有关统计图的试题时,既要考察图的直观形象,又要注意核对数据,不要被表面形象所迷惑。
3、概率论
概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。
例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面。
随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。
事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。
4、中位数
中位数(又称中值,英语:Median),统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两部分。
对于有限的数集,可以通过把所有观察值高低排序后找出正中间的一个作为中位数。如果观察值有偶数个,通常取最中间的两个数值的平均数作为中位数。
5、集合论
集合论,是数学的一个基本的分支学科,研究对象是一般集合。集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域。
集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含了集合、元素和成员关系等最基本的数学概念。
在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。集合论和逻辑与一阶逻辑共同构成了数学的公理化基础,以未定义的“集合”与“集合成员”等术语来形式化地建构数学物件。
在朴素集合论中,集合被当做一堆物件构成的整体之类的自证概念。
在公理化集合论中,集合和集合成员并不直接被定义,而是先规范可以描述其性质的一些公理。在此一想法之下,集合和集合成员是有如在欧式几何中的点和线,而不被直接定义。
参考资料来源:网络——统计
⑷ 统计学方法有哪些
一、描述统计
描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。
集中趋势分析:集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。例如被试的平均成绩多少?是正偏分布还是负偏分布?
离中趋势分析:离中趋势分析主要靠全距、四分差、平均差、方差(协方差:用来度量两个随机变量关系的统计量)、标准差等统计指标来研究数据的离中趋势。例如,我们想知道两个教学班的语文成绩中,哪个班级内的成绩分布更分散,就可以用两个班级的四分差或百分点来比较。
相关分析:相关分析探讨数据之间是否具有统计学上的关联性。这种关系既包括两个数据之间的单一相关关系——如年龄与个人领域空间之间的关系,也包括多个数据之间的多重相关关系——如年龄、抑郁症发生率、个人领域空间之间的关系;既包括A大B就大(小),A小B就小(大)的直线相关关系,也可以是复杂相关关系(A=Y-B*X);既可以是A、B变量同时增大这种正相关关系,也可以是A变量增大时B变量减小这种负相关,还包括两变量共同变化的紧密程度——即相关系数。实际上,相关关系唯一不研究的数据关系,就是数据协同变化的内在根据——即因果关系。获得相关系数有什么用呢?简而言之,有了相关系数,就可以根据回归方程,进行A变量到B变量的估算,这就是所谓的回归分析,因此,相关分析是一种完整的统计研究方法,它贯穿于提出假设,数据研究,数据分析,数据研究的始终。
例如,我们想知道对监狱情景进行什么改造,可以降低囚徒的暴力倾向。我们就需要将不同的囚舍颜色基调、囚舍绿化程度、囚室人口密度、放风时间、探视时间进行排列组合,然后让每个囚室一种实验处理,然后用因素分析法找出与囚徒暴力倾向的相关系数最高的因素。假定这一因素为囚室人口密度,我们又要将被试随机分入不同人口密度的十几个囚室中生活,继而得到人口密度和暴力倾向两组变量(即我们讨论过的A、B两列变量)。然后,我们将人口密度排入X轴,将暴力倾向分排入Y轴,获得了一个很有价值的图表,当某典狱长想知道,某囚舍扩建到N人/间囚室,暴力倾向能降低多少。我们可以当前人口密度和改建后人口密度带入相应的回归方程,算出扩建前的预期暴力倾向和扩建后的预期暴力倾向,两数据之差即典狱长想知道的结果。
推论统计:
推论统计是统计学乃至于心理统计学中较为年轻的一部分内容。它以统计结果为依据,来证明或推翻某个命题。具体来说,就是通过分析样本与样本分布的差异,来估算样本与总体、同一样本的前后测成绩差异,样本与样本的成绩差距、总体与总体的成绩差距是否具有显着性差异。例如,我们想研究教育背景是否会影响人的智力测验成绩。可以找100名24岁大学毕业生和100名24岁初中毕业生。采集他们的一些智力测验成绩。用推论统计方法进行数据处理,最后会得出类似这样儿的结论:“研究发现,大学毕业生组的成绩显着高于初中毕业生组的成绩,二者在0.01水平上具有显着性差异,说明大学毕业生的一些智力测验成绩优于中学毕业生组。”
其中,如果用EXCEL 来求描述统计。其方法是:工具-加载宏-勾选"分析工具库",然后关闭Excel然后重新打开,工具菜单就会出现"数据分析"。描述统计是“数据分析”内一个子菜单,在做的时候,记得要把方格输入正确。最好直接点选。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、假设检验
1、参数检验
参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验 :使用条件:当样本含量n较大时,样本值符合正态分布
2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布
A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;
B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;
C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;
B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析
介绍:信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α信度系数法。
方法:(1)重测信度法编辑:这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。
(2)复本信度法编辑:让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。
(3)折半信度法编辑:折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表(李克特量表(Likert scale)是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的。它是由美国社会心理学家李克特于1932年在原有的总加量表基础上改进而成的。该量表由一组陈述组成,每一陈述有"非常同意"、"同意"、"不一定"、"不同意"、"非常不同意"五种回答,分别记为5、4、3、2、1,每个被调查者的态度总分就是他对各道题的回答所得分数的加总,这一总分可说明他的态度强弱或他在这一量表上的不同状态。)。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式:求出整个量表的信度系数(ru)。
(4)α信度系数法编辑:Cronbach
α信度系数是目前最常用的信度系数,其公式为:
α=(k/(k-1))*(1-(∑Si^2)/ST^2)
其中,K为量表中题项的总数, Si^2为第i题得分的题内方差, ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。
总量表的信度系数最好在0.8以上,0.7-0.8之间可以接受;分量表的信度系数最好在0.7以上,0.6-0.7还可以接受。Cronbach 's alpha系数如果在0.6以下就要考虑重新编问卷。
检査测量的可信度,例如调查问卷的真实性。
分类:
1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度
2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
四、列联表分析
列联表是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。
简介:一般,若总体中的个体可按两个属性A、B分类,A有r个等级A1,A2,…,Ar,B有c个等级B1,B2,…,Bc,从总体中抽取大小为n的样本,设其中有nij个个体的属性属于等级Ai和Bj,nij称为频数,将r×c个nij排列为一个r行c列的二维列联表,简称r×c表。若所考虑的属性多于两个,也可按类似的方式作出列联表,称为多维列联表。
列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。
用于分析离散变量或定型变量之间是否存在相关。
列联表分析的基本问题是,判明所考察的各属性之间有无关联,即是否独立。如在前例中,问题是:一个人是否色盲与其性别是否有关?在r×с表中,若以pi、pj和pij分别表示总体中的个体属于等级Ai,属于等级Bj和同时属于Ai、Bj的概率(pi,pj称边缘概率,pij称格概率),“A、B两属性无关联”的假设可以表述为H0:pij=pi·pj,(i=1,2,…,r;j=1,2,…,с),未知参数pij、pi、pj的最大似然估计(见点估计)分别为行和及列和(统称边缘和)
为样本大小。根据K.皮尔森(1904)的拟合优度检验或似然比检验(见假设检验),当h0成立,且一切pi>0和pj>0时,统计量的渐近分布是自由度为(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n称为期望频数。当n足够大,且表中各格的Eij都不太小时,可以据此对h0作检验:若Ⅹ值足够大,就拒绝假设h0,即认为A与B有关联。在前面的色觉问题中,曾按此检验,判定出性别与色觉之间存在某种关联。
需要注意:
若样本大小n不很大,则上述基于渐近分布的方法就不适用。对此,在四格表情形,R.A.费希尔(1935)提出了一种适用于所有n的精确检验法。其思想是在固定各边缘和的条件下,根据超几何分布(见概率分布),可以计算观测频数出现任意一种特定排列的条件概率。把实际出现的观测频数排列,以及比它呈现更多关联迹象的所有可能排列的条件概率都算出来并相加,若所得结果小于给定的显着性水平,则判定所考虑的两个属性存在关联,从而拒绝h0。
对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。
列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。
五、相关分析
研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;
2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;
3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。
六、方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
分类
1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系
2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,
七、回归分析
分类:
1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
2、多元线性回归分析
使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。
1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法
2)横型诊断方法:
A 残差检验: 观测值与估计值的差值要艰从正态分布
B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法
C 共线性诊断:
• 诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例
• 处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等
3、Logistic回归分析
线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况
分类:
Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。
4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等
八、聚类分析
聚类与分类的不同在于,聚类所要求划分的类是未知的。
聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。
从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包中,如SPSS、SAS等。
从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。
聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。
从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。
定义:
依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。
各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。
各指标之间具有一定的相关关系。
聚类分析(cluster
analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析区别于分类分析(classification
analysis) ,后者是有监督的学习。
变量类型:定类变量、定量(离散和连续)变量
样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。
1、性质分类:
Q型聚类分析:对样本进行分类处理,又称样本聚类分祈使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等
R型聚类分析:对指标进行分类处理,又称指标聚类分析使用相似系数作为统计量衡量相似度,相关系数、列联系数等
2、方法分类:
1)系统聚类法:适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类
2)逐步聚类法:适用于大样本的样本聚类
3)其他聚类法:两步聚类、K均值聚类等
九、判别分析
1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体
2、与聚类分析区别
1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本
2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类
3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类
3、进行分类 :
1)Fisher判别分析法 :
以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类,适用于两类判别;
以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于
适用于多类判别。
2)BAYES判别分析法 :
BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;
十、主成分分析
介绍:主成分分析(Principal
Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。
主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。
将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息。
原理:在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。
设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上用来降维的一种方法。
缺点: 1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分将空有信息量而无实际含义)。
2、主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。
十一、因子分析
一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法
与主成分分析比较:
相同:都能够起到治理多个原始变量内在结构关系的作用
不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法
用途:
1)减少分析变量个数
2)通过对变量间相关关系探测,将原始变量进行分类
十二、时间序列分析
动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。
主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型
时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记录值。构成时间序列的要素有两个:其一是时间,其二是与时间相对应的变量水平。实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。
时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。
时间序列预测法的应用:
系统描述:根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述;
系统分析:当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理;
预测未来:一般用ARMA模型拟合时间序列,预测该时间序列未来值;
决策和控制:根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。
特点:
假定事物的过去趋势会延伸到未来;
预测所依据的数据具有不规则性;
撇开了市场发展之间的因果关系。
①时间序列分析预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去会同样延续到未来。事物的现实是历史发展的结果,而事物的未来又是现实的延伸,事物的过去和未来是有联系的。市场预测的时间序列分析法,正是根据客观事物发展的这种连续规律性,运用过去的历史数据,通过统计分析,进一步推测市场未来的发展趋势。市场预测中,事物的过去会同样延续到未来,其意思是说,市场未来不会发生突然跳跃式变化,而是渐进变化的。
时间序列分析预测法的哲学依据,是唯物辩证法中的基本观点,即认为一切事物都是发展变化的,事物的发展变化在时间上具有连续性,市场现象也是这样。市场现象过去和现在的发展变化规律和发展水平,会影响到市场现象未来的发展变化规律和规模水平;市场现象未来的变化规律和水平,是市场现象过去和现在变化规律和发展水平的结果。
需要指出,由于事物的发展不仅有连续性的特点,而且又是复杂多样的。因此,在应用时间序列分析法进行市场预测时应注意市场现象未来发展变化规律和发展水平,不一定与其历史和现在的发展变化规律完全一致。随着市场现象的发展,它还会出现一些新的特点。因此,在时间序列分析预测中,决不能机械地按市场现象过去和现在的规律向外延伸。必须要研究分析市场现象变化的新特点,新表现,并且将这些新特点和新表现充分考虑在预测值内。这样才能对市场现象做出既延续其历史变化规律,又符合其现实表现的可靠的预测结果。
②时间序列分析预测法突出了时间因素在预测中的作用,暂不考虑外界具体因素的影响。时间序列在时间序列分析预测法处于核心位置,没有时间序列,就没有这一方法的存在。虽然,预测对象的发展变化是受很多因素影响的。但是,运用时间序列分析进行量的预测,实际上将所有的影响因素归结到时间这一因素上,只承认所有影响因素的综合作用,并在未来对预测对象仍然起作用,并未去分析探讨预测对象和影响因素之间的因果关系。因此,为了求得能反映市场未来发展变化的精确预测值,在运用时间序列分析法进行预测时,必须将量的分析方法和质的分析方法结合起来,从质的方面充分研究各种因素与市场的关系,在充分分析研究影响市场变化的各种因素的基础上确定预测值。
需要指出的是,时间序列预测法因突出时间序列暂不考虑外界因素影响,因而存在着预测误差的缺陷,当遇到外界发生较大变化,往往会有较大偏差,时间序列预测法对于中短期预测的效果要比长期预测的效果好。因为客观事物,尤其是经济现象,在一个较长时间内发生外界因素变化的可能性加大,它们对市场经济现象必定要产生重大影响。如果出现这种情况,进行预测时,只考虑时间因素不考虑外界因素对预测对象的影响,其预测结果就会与实际状况严重不符。
⑸ 问卷调查所能用的统计方法有哪些
1. 调查的样本量太小,计算出的结论可靠性不高。
例如看到一些研究生的论文,只发了几十份问卷调查表,就根据统计到的百分比写下十分肯定的结论。其实,是有问题的。
例如:调查“你对××活动喜欢的程度”,调查了45人。调查结果:非常喜欢2人,喜欢5人,一般10人,不太喜欢13人,不喜欢15人。作者统计出:喜欢和非常喜欢的共7人占调查人数45人的15.5%,不太喜欢和不喜欢的共28人,占62.2%。并根据15.5%和62.2%来进一步写结论。
但是,他忽略了调查的样本计算出率以后,还应该计算率的标准误和置信区间。如本例喜欢率为15.5%。还应该计算率的标准误Sp。
_________ _________________
本例,喜欢率的标准误 Sp =√P(1-P)/n = √15.5(100-15.5)/45 = 5.39 %
按样本量n,查t值表上, n-1的t0.01和t0.05 的值,查得t0.05=2.02 , t0.01=2.69, 根据喜欢率15.5 %、标准误5.39 % 和t0.05的值,可计算出:
95% 置信区间:15.5±2.02×5.39=4.6%~26.4%。(置信区间上下限的差值高达21.8%)。
95% 置信区间的含义是,如果用样本的喜欢率15.5%来估计总体的喜欢率时,有95%的可能是在4.6%~26.4%的区间之间。这样高达21.8%的区间意味着15.5%是不太可信的。
但是,如果扩大样本量到450人,4500人,而统计出的喜欢率也是15.5%。由于调查的样本量扩大了,标准误 Sp会缩小,计算出的95% 置信区间也就缩小为12.2%~18.8%和14.4%~16.6%。这时用样本率估计总体率时,上下限的差值很接近15.5%,才是可信的。
2. 调查数据的统计分析过于简单。
目前看到的调查数据统计分析大都比较简单。只是计算各个问卷指标的百分比,如上面举例的喜欢率15.5%等等。
要避免统计分析过于简单,首先,在做调查表设计时,就事先要考虑好调查数据的统计分析方法。例如同样是调查“你对××活动喜欢的程度”,除了要扩大调查样本量外,在调查表中增加调查性别和年龄。这样就可以采用一种较为复杂的方法——交叉分析。交叉分析是分析“年龄”、 “性别”和“对××活动喜欢程度”三个变量之间的关系。假设不分类统计时,喜欢率是15.5%。交叉分析后就会发现由于性别的不同,年龄段的不同喜欢率是不同的。
例如:2005年国民体质监测问卷调查中,对“睡眠时间”的统计分析,如果只是简单地计算某市成年男子2473人的问卷,只能统计出:睡眠6小时以下的人为13.4%,睡眠6~9小时的73.6%,睡眠9小时以上的13%。但是,如果增加年龄因素,分年龄段进行统计就可以看到,各年龄段的百分比是不同的(统计表略)。利用分年龄段的百分比还可以画出折线图(图略)。从图上更可以清楚的显示出:随着年龄增加,睡眠时间逐渐减少的趋势。
上述统计分析方法比较简单。但是,仅靠简单的统计方法来处理问卷调查数据是十分可惜的,因为大量的数据信息还没有充分利用。所以,设计问卷时,就应该注意到,让收集到的调查数据能做多因素统计分析(如:回归分析,因子分析等)。下面是我帮助或指导有关单位做过的统计分析实例:
例1:2005年国民体质监测的调查问卷内容中,包括了各人的文化程度,职业,工作、生活和体育锻炼等方面的许多问题。为了分析这些调查内容和各人的体质有什么关系,找出哪些因素对体质的好坏特别有关?在进行统计分析时,就需要把体质监测的指标和问卷调查的内容联系起来进行统计。
在成年组调查问卷内容中可进行计算的12个问题是:受教育程度,职业,平均每周工作时间,平均每天睡眠时间,睡眠质量,平均每天步行时间,平均每天坐姿活动时间,吸烟状况,运动感受,平均每周锻炼次数,平均每次锻炼时间,坚持锻炼时间。把这些作为X1, X2, ……X12,再把每个人体质监测中的体质总分作为Y,就可以进行逐步回归分析计算。
某省成年男甲组4242人的数据用逐步回归分析计算结果是:从12个指标中依次选出了X 1 (受教育程度),X12 (坚持锻炼时间), X10(平均每周锻炼次数),X7(平均每天坐姿活动时间) 4个指标。得到回归方程:
Y = 21.85+ 1.02 X 1 -0.20 X7+ 0.34 X10 + 0.28 X12 F=101.92 (P<0.01)
复相关系数 R= 0.296
根据回归方程的系数就可以知道:受教育程度高,平均每周锻炼次数多,坚持锻炼时间长,平均每天坐姿活动时间少的人体质总分就高。反之就低。而这个结论只做一般的调查表百分比统计,是得不到的。
例2:某市开展《超重与肥胖人群运动与营养综合干预实验研究》12周后,对参加者进行了问卷调查,内容有:每天进餐情况(分为:五分饱,八分饱,十分饱),每周快走次数(分为:3次以下,3次,4次,5次及以上),每次快走时间(分为:30分钟以内,30~60分钟,60~90分钟,90分钟以上),每次快走距离(分为:3公里以下,3~4公里,5公里及以上)等。
如果仅统计各个问卷内容的百分比,只能计算出如:每次快走时间30分钟以内的29人占22.1%,30~60分钟的47人占35.9%,60~90分钟的19人占14.5%,90分钟以上的36人占27.5% 等等,这样的统计结果并不能说明什么问题。更无法分析出哪些是对减肥有效果的因素。
但是,把问卷调查的内容与参加12周实验后各人体重下降值联系起来统计,情况就不同了。如可以分别计算出:每周快走次数、每次快走时间等指标与体重下降值的相关系数。当计算出以上指标都和体重下降值呈中度或低度相关时,还可以进一步用回归分析的方法计算出标准回归系数或偏回归平方和来分析各指标对体重下降的作用大小。
本例有131人参加实验,为了用数学表达式来描述:饮食、运动量和降体重的关系。把调查表内容转换成数字后,选择了X1(每天进餐情况)、X2(每周快走次数)、X3(每次快走距离)与Y(体重下降值)计算出三元回归方程:
Y= 1.26-1.30 X1 +0.59 X2 +1.70 X3 F =13.855 (P<0.01)
复相关系数 R = 0.4966
从回归方程可以看到,在吃八分饱的情况下,增加每周快走次数和每次快走距离,降体重的效果更好。
可见,当采用了多元回归分析方法后,可以充分利用调查表里的信息从而获得比简单的统计百分比更多的研究结果。
例3:某市对学生体质下降原因进行调研时,设计的调查表内容包括:学生、家长、学校等方面30多项指标。为了分析调查的各指标对学生身体素质影响的主次关系,从调查表中选出可进行因子分析计算的26个指标进行了R型因子分析计算。
R型因子分析通过计算,可找出控制着所有指标的几个主要因素。计算后,原来的许多指标重新组合成较少的几个新的综合指标──公因子。这些公因子相互独立而且反映了原来指标的绝大部分信息。通过R型因子分析的结果,可以看出哪些指标是同一类的,每一个指标以哪一公因子为主,其他公因子所占比例如何,从而分析该指标的特点。还可根据贡献率较大的几个公因子中所包括的指标,来分析出各指标的主次关系。
对3699名中学生的调查数据作R型因子分析计算后,从贡献率最大的5个公因子所包括的调查指标看,归入第1公因子的7个指标,都和参加体育活动有关,因此把第一公因子命名为体育活动因子,归入第2公因子的2个指标,是反映学生家长文化水平的学历,归入第3公因子的2个指标,是反映学生是否关心自己体质、健康的指标,归入第4公因子的2个指标,是反映学校是否关心和组织学生体育活动的指标,归入第5公因子的2个指标,是反映学生家长对体育运动的态度的指标。
从而可以分析出,对学生体质影响最大的第一因素是学生参加体育活动的情况,第二因素是家长的文化水平高低,第三因素是学生自己是否关心自己的体质、健康情况。第四因素是学校是否关心和组织学生参加体育活动,第五因素是家长是否喜爱体育活动是否支持学生参加体育活动。
因子分析的优点在于用一个或少数几个综合指标概括原始数据中尽量多的信息,它能够实现对问题的高度概括,并揭示出一般的特征和规律。本例通过因子分析的统计方法,从学生填在26个调查问卷中的信息,分析出了对学生体质影响的几个主要因素。
⑹ 数学有几种统计方法
要从样本中抽样调查,可以分为概率抽样和非概率抽样。
概率抽样方法又分为 简单随机抽样,分层抽样,系统抽样,整群抽样,多阶段抽样。
而非概率抽样分为:方便抽样。判断抽样,配额抽样,滚雪球抽样。
简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的概率相等,样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
分层抽样,适用于总体量大、差异程度较大的情况。先将总体单位按其差异程度或某一特征分类、分层,然后在各类或每层中再随机抽取样本单位。分层抽样实际上是科学分组、或分类与随机原则的结合。分层抽样有等比抽样和不等比抽样之分,当总数各类差别过大时,可采用不等比抽样。除了分层或分类外,其组织方式与简单随机抽样和等距抽样相同。
系统抽样,将总体各单位按摩椅标志顺序排队,然后按照一定时间隔抽取样本单位。如总体共有N个单位,从中抽取的样本为n个单位,将总体单位数N除以样本单位数n,便是等距抽样的间隔距离。让后在第一组中先随即抽取一个单位,再每隔k个单位抽一个,直到抽满n个单位为止。
整群抽样,在全及总体中以群(或组)为单位,按纯随机方式或等距抽样方式,抽取若干群(或组),然后对所有抽中的各群(或各组)中的全部单位一一进行调查。
多阶段抽样,将多个抽样程序分成若干阶段,然后逐阶段进行抽样,以完成整个抽样过程。
适用范围:总体包括的单位很多,而且分布很广,通过一次抽样抽选出样本是很困难的,这时使用多阶段抽样。
多阶段抽样的一个例子
例:对我国的农产量进行抽样调查。
抽样方法是:先由省抽县,由抽中的县内再抽乡、村,由抽中的乡、村抽地块,最后才由抽中的地块再抽样本单位。
⑺ 常见的数据统计方法有什么
常见的数据统计方法有:表格、折线统计图、条形统计图、扇形统计图。举一个例子来具体分说明一下,比如说:我在淘宝开了个童装店,为了方便统计每半个月的销售额,现在用以上这四种统计方法来演示一下。
1.表格就是通过画格子的方式来统计数据,在这里可以画三行横线,得到两条细长的格子,再把这两行均匀的分为15个上下格子。横一为日期,横二为销售额,半个月下来都填进去就一目了然。
2.折线是通过画点,把15天的销售额都连成一条折线,通过上下起伏来看波动的数据。先画一“L”形,横线作日期,竖线作销售额,销售额可以自己写一个数,一直往上数与数之间相差一样。均匀的把横竖线分为15份,每个日期对应多少销售额,就在“L”的半框里,以对应的日期和销售画横线和竖线,交叉的位置取一点。然后每天如此,再用直线连接这15个点,就能清楚的看到这半个月哪一天销售最好,哪一天销售垫底。
3.条形统计图作出的是条状的数据统计图,和折线统计图一样,画“L”,横为日期竖为销售额。只不过这里不画点点,画倒立的长方形,然后通过高高低低的条形图来分析半个月的销售额。
4.扇形统计图就是把一个圆形,平均分为15份,一个月下来把所有的日销售额加起来,用当天的数据除以总数,乘以百分数。每一分里写上日期和当天销售额占总数的百分比,用这个百分数来统计半个月的数据。每个图的做法都不一样,但表达的意思都是同样的,这就是日常生活中最常见的几种数据统计。
⑻ 如何统计大学生的成绩
用表格软件啊 ,将每个认得成绩输进去,在按学分的公式在结果栏把函数关系列好,将所有的成绩都输入后,将光标放到第一个结果栏的右下角,会显示一个+。然后按住鼠标左键向下拖动,下面的成绩的平均学分绩点就一次出来了啊。然后再按结果栏由高到低的顺序排序就ok了。希望能帮到你。
⑼ 国家开放大学统计学原理:统计分布的4种只要表达方式是什么
法
将统计分布以统计表的形式表示出来。
二、图示法
在列表法的基础上,绘制分布图来表示统计分布,以便更直观地显示统计分布的特征。
常用的图有:直方图、折线图、曲线图和饼图。
1.直方图
对于一个定量数据,直方图是一个常见的而且非常重要的图形。它的横坐标代表变量分组,纵坐标代表各变量值出现的频数,这样,各组与相应的频数就形成了一个矩形,即直方图。
直方图的每个条形的宽度表示组距宽度,高度表示各组频数或频率。
直方图与条形图或柱形图的区别:直方图一般来描述一组数据的组距式分组,而用条形图或柱形图来描述一组数据的单项式分组。
2.折线图
依次连接各组组中值上方的高度等于频数或频率的点而形成的图形。
折线图两端点应与横轴连线,连线的方法应从折线端点连到横轴两边组距的中点位置上。
3.曲线图
当数列的组数非常多,组距非常小时,折线就会近似地表现为一条平滑的曲线,这样就会形成统计分布的曲线图。
使用频率较高的是“正态分布曲线”,其特征:以标志变量的平均值为中心,沿对称轴向两边发展,越接近中心,分配的次数越多,离中心越远,分配的次数越小。
⑽ 数学统计方法有哪些
统计分析 方法 以数学为基础,具有严密的结构,需要遵循特定的程序和规范,从确立选题、提出假设、进行抽样、具体实施,一直到分析解释数据,得出结论,都须符合一定的逻辑和标准。下面我给大家整理了关于数学统计方法有哪些,希望对你有帮助!
1数学统计方法有哪些
数学统计方法有哪些?掌握、了解统计分析的基本特征,对于我们进行统计分析具有重要的意义。采用统计分析方法进行研究,是研究达到高水平的客观要求,应用统计分析方法进行科学研究。
2统计分析方法特征
直观性:现实世界是复杂多样的,其本质和规律难以直接把握,统计分析方法从现实情境中收集数据,通过次序、频数等直观、浅显的量化数字及简明的图表表现出来,这些数据的处理,将我们的调研与客观世界紧密相连,从而提示和洞悉现实世界的本质及其规律。
科学性:统计分析方法以数学为基础,具有严密的结构,需要遵循特定的程序和规范,从确立选题、提出假设、进行抽样、具体实施,一直到分析解释数据,得出结论,都须符合一定的逻辑和标准。
可重复性:可重复性是衡量研究质量与水平高低的一个客观尺度,用统计分析方法进行的研究皆是可重复的。从课题的选取、抽样的设计,到数据的收集与处理,皆可在相同的条件下进行重复,并能对研究所得的结果进行验证。
3数学统计图介绍
条形统计图:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。优点:很容易看出各种数量的多少。注意:画条形统计图时,直条的宽窄必须相同。取一个单位长度表示数量的多少要根据具体情况而确定; 复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。制作条形统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小画出长短不同的直条,并注明数量。
折线统计图“用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。制作折线统计图的一般步骤:
(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。
(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。
(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。
扇形统计图:用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。优点:很清楚地表示出各部分同总数之间的关系。制扇形统计图的一般步骤:
1)先算出各部分数量占总量的百分之几。
2)再算出表示各部分数量的扇形的圆心角度数。
3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。
4数学的统计方法
统计表:统计调查所得来的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表
统计图:统计图是根据统计数字,用几何图形、事物形象和地图等绘制的各种图形。它具有直观、形象、生动、具体等特点。统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。
条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。从条形统计图中很容易看出各种数量的多少。
2)扇形统计图:扇形统计图是用整个圆表示总数(单位“1”),用圆内各个扇形的大小表示各部分量占总量的百分之几,扇形统计图中各部分的百分比之和是单位“1”。
3)折线统计图:以折线的上升或下降来表示统计数量的增减变化的统计图,叫作折线统计图。(折线变化幅度越大,数量关系变化越大)与条形统计图比较,折线统计图不仅可以表示数量的多少,而且可以反映数据的增减变化情况,。
数学统计方法有哪些相关 文章 :
★ 数学教学方法有哪些
★ 常用的数学教学方法有哪些
★ 有效的数学教学方法有哪些
★ 数学十大速算技巧
★ 最新小学数学有哪些教学方法
★ 初中数学的学习方法有哪些
★ 数学思维方法有哪些
★ 数学常用的教学方法有哪些
★ 小学数学教学方法有哪些?
★ 小学数学教法方法有哪些