Ⅰ 小学数学解题方法大全
小学数学的解题 方法 有哪些?很多人经常抓不住解题的精髓,以至于数学成绩总是提不高。下面是我为大家整理的关于小学数学解题 方法大全 ,希望对您有所帮助。欢迎大家阅读参考学习!
一、小学数学解题方法:形象思维方法
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。
1、实物演示法
利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。
这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。
鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。
4、探索法
按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国着名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在 儿童 的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。
第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。
第二、定向猜测,反复实践,在不断分析、调整中寻找规律。
第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。
5、观察法
通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”
小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。
如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。
“观察”的要求:
第一、观察要细致、准确。
第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。
6、典型法
针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归一、倍比和归总算法、行程、工程、消同求异、平均数等。
运用典型法必须注意:
(1)要掌握典型材料的关键及规律。
(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。
(3)典型和技巧相联系。
7、放缩法
通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。
思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。
思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。
放缩法有时运用在估算和验算上。
8、验证法
你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。
验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。
(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。
(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。
(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)
按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。
(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。
二、小学数学解题方法: 抽象思维 方法
运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫 逻辑思维 。
抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。
形式思维能力:分析、综合、比较、抽象、概括、判断、推理。
辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。
小学、中学数学要培养学生初步的抽象思维能力,重点突出在:
(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。
(2)思维方法上,应该学会有条有理,有根有据地思考。
(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。
(4) 思维训练 上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。
9、对照法
如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。
这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。
10、公式法
运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
11、比较法
通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。
比较法要注意:
(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。
(2)找联系与区别,这是比较的实质。
(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。
(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。
(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。
相关 文章 :
1. 小学数学常用解题思路
2. 小学数学公式大全(完整)
3. 小学数学的19种学习方法
4. 小学数学教法方法有哪些
5. 小学五年级数学学习方法和技巧大全
Ⅱ 数学解决问题的方法
总的来说,解决数学问题的方法有两种:综合法和分析法。综合法就是利用已有的条件和结论一步一步的推导出想要的结论,是一种直接解决问题的方法;分析法就是由要得到的结论倒推出必须的条件,然后再将推出的条件作为结论,继续倒推必要的条件……如此循环,直到最后推出所要的条件是已知的为止,此时问题已基本上解决了,只需按原路回推即可解决问题,这是一种间接解决问题的方法,但却行之有效。而实际应用中,往往两者结合使用。其他的那些解题方法,像转化、假设、替换、倒推等都只是这两种方法的细化而已。
Ⅲ 初中数学解题思维方法大全
还在为初中数学解题而烦恼?还在为数学低分而烦躁?那是你没有全面理解初中数学的解题思维和解题 方法 。暑假不出门,了解初中数学解题思维 方法大全 ,助你在新学期解决数学难题。
初中数学解题思维方法大全
一、选择题的解法
1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”
8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”
9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函数、方程、不等式
常用的数学思想方法:⑴数形结合的思想方法。⑵待定系数法。⑶配方法。⑷联系与转化的思想。⑸图像的平移变换。
四、证明角的相等
1、对顶角相等。
2、角(或同角)的补角相等或余角相等。
3、两直线平行,同位角相等、内错角相等。
4、凡直角都相等。
5、角平分线分得的两个角相等。
6、同一个三角形中,等边对等角。
7、等腰三角形中,底边上的高(或中线)平分顶角。
8、平行四边形的对角相等。
9、菱形的每一条对角线平分一组对角。
10、 等腰梯形同一底上的两个角相等。
11、 关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所 对的圆心角相等。
12、 圆内接四边形的任何一个外角都等于它的内对角。
13、 同弧或等弧所对的圆周角相等。
14、 弦切角等于它所夹的弧对的圆周角。
15、 同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
16、 全等三角形的对应角相等。
17、 相似三角形的对应角相等。
18、 利用等量代换。
19、 利用代数或三角计算出角的度数相等
20、 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。
五、证明直线的平行或垂直
1、证明两条直线平行的主要依据和方法:
⑴、定义、在同一平面内不相交的两条直线平行。
⑵、平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。
⑶、平行线的判定:同位角相等(内错角或同旁内角),两直线平行。
⑷、平行四边形的对边平行。
⑸、梯形的两底平行。
⑹、三角形(或梯形)的中位线平行与第三边(或两底)
⑺、一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。
2、证明两条直线垂直的主要依据和方法:
⑴、两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。
⑵、直角三角形的两直角边互相垂直。
⑶、三角形的两个锐角互余,则第三个内角为直角。
⑷、三角形一边的中线等于这边的一半,则这个三角形为直角三角形。
⑸、三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。
⑹、三角形(或多边形)一边上的高垂直于这边。
⑺、等腰三角形的顶角平分线(或底边上的中线)垂直于底边。
⑻、矩形的两临边互相垂直。
⑼、菱形的对角线互相垂直。
⑽、平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。
⑾、半圆或直径所对的圆周角是直角。
⑿、圆的切线垂直于过切点的半径。
⒀、相交两圆的连心线垂直于两圆的公共弦。
六、证明线段的比例式或等积式的主要依据和方法:
1、比例线段的定义。
2、平行线分线段成比例定理及推论。
3、平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
4、过分点作平行线;
5、相似三角形的对应高成比例,对应中线的比和对应角平分线的比都等于相似比。
6、相似三角形的周长的比等于相似比。
7、相似三角形的面积的比等于相似比的平方。
8、相似三角形的对应边成比例。
9、通过比例的性质推导。
10、用代数、三角方法进行计算。
11、借助等比或等线段代换。
七、几何作图
1、掌握最基本的五种尺规作图
⑴、作一条线段等于已知线段。
⑵、作一个角等于已知角。
⑶、平分已知角。
⑷、经过一点作已知直线的垂线。
⑸、作线段的垂直平分线。
2、掌握课本中各章要求的作图题
⑴、根据条件作任意的三角形、等要素那角性、直角三角形。
⑵、根据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。
⑶、作已知图形关于一点、一条直线对称的图形。
⑷、会作三角形的外接圆、内切圆。
⑸、平分已知弧。
⑹、作两条线段的比例中项。
⑺、作正三角形、正四边形、正六边形等。
八、几何计算
(一)、角度与弧度的计算
1、三角形和四边形的角的计算主要依据
⑴、三角形的内角和定理及推论。
⑵、四边形的内角和定理及推论。
⑶、圆内接四边形性质定理。
2、弧和相关的角的计算主要依据
⑴、圆心角的度数等于它所对的弧的度数。
⑵、圆周角的度数等于它所对的弧的度数的一半。
⑶、弦切角的度数等于所夹弧度数的一半。
3、多边形的角的计算主要依据
⑴、n边形的内角和=(n-2)*180°
⑵、正n边形的每一内角=(n-2)*180°÷n
⑶、正n边形的任一外角等于各边所对的中心角且都等于
(二)、长度的计算
1、 三角形、平行四边形和梯形的计算
用到的定理主要有三角形全等定理,中位线定理,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。关于梯形中线段计算主要依据梯形中位线定理及等腰梯形、直角梯形的性质定理等。
2、 有关圆的线段计算的主要依据
⑴、切线长定理
⑵、圆切线的性质定理。
⑶、垂径定理。
⑷、圆外切四边形两组对边的和相等。
⑸、两圆外切时圆心距等于两圆半径之和,两圆内切时圆心距等于两半径之差。
3、 直角三角形边的计算
直角三角形边长的计算应用最广,其理论依据主要是勾股定理和特殊角三角形的性质及锐角三角函数等。
4、 成比例线段长度的求法
⑴、平行线分线段成比例定理;
⑵、相似形对应线段的比等于相似比;
⑶、射影定理;
⑷、相交弦定理及推论,切割线定理及推论;
⑸、正多边形的边和其他线段计算转化为特殊三角形。
三、图形面积的计算
1、 四边形的面积公式
⑴、S□ABCD = a·h
⑵、S菱形 = 1/2a·b (a、b为对角线)
⑶、S梯形 = 1/2(a + b)·h = m·h (m为中位线)
2、 三角形的面积公式
⑴、S△ = 1/2· a·h
⑵、S△ = 1/2· P·r(P为三角形周长,r为三角形内切圆的半径)
3、 S正多边形 = 1/2· P n·r n = 1/2·n a n·r n
4、 S圆 =πR2
5、S扇形 = nπ= 1/2LR
6、S弓形 = S扇 - S△
九、证明两线段相等的方法:
⑴、利用全等三角形对应线段相等;
⑵、利用等腰三角形性质;
⑶、利用同一个三角形中等角对等边;
⑷、利用线段垂直平分线;
⑸、角平分线的性质;
⑹、利用轴对称的性质;
⑺、平行线等分线段定理;
⑻、平行四边形性质;
⑼、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。推论1:平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
⑽、圆心角、弧、弦、弦心距的关系定理及推论;
⑾、切线长定理。
十、证明弧相等的方法:
⑴、定义;同圆或等圆中,能够完全重合的两段弧。
⑵、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧。
②垂直平分一条弦的直线,经过圆心,并且平分弦所对的两条弧。
③平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:两条平行弦所夹的弧相等
⑶、圆心角、弧、圆周角之间度数关系;(圆心角 = 弧 = 2圆周角)
⑷、圆周角定理的推论1;(同弧或等弧所对的圆周角相等,同圆或等圆中相等的圆周角所对的弧相等)
十一、切线小结
1、证明切线的三种方法:
⑴、定义——一个交点;
⑵、d=r;(若一条直线到圆心的距离等于半径,则这条直线是圆的切线)
⑶、切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)
2、切线的八个性质:
⑴、定义:唯一交点;
⑵、切线和圆心的距离等于半径; (d=r)
⑶、切线的性质定理:圆的切线垂直于过切点的半径;
⑷、推论1:过圆心(且垂直于切线的直线)必过切点;
⑸、推论2:过切点(且垂直于切线的直线)必过圆心;
⑹、切线长相等;过圆外一点作圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。
⑺、连结两平行切线切点间的线段为直径
⑻、经过直径两端点的切线互相平行。
3、证明切线的两种类型:
⑴、已知直线和圆相交于一点
证明方法:连交点,证垂直
⑵、未知直线和圆是否相交于哪点或没告诉交点
证明方法:做垂直,证半径
十二、辅助线的作用与添加方法:
辅助线是沟通已知与未知的桥梁.现已学过的添加辅助线方法有:
1、梯形的七类辅助线:
⑴、作梯形的高;
⑵、延长两腰;
⑶、平移一腰;
⑷、平移对角线;
⑸、利用中点;
⑹、连结两腰中点;
2、一般的辅助线
⑴、过两定点作直线;
⑵、作三角形的高、中线、角平分线;
⑶、延长某一线段;
⑷、作一点关于已知直线的对称点;
⑸、构造直角三角形;
⑹、作平行线;
⑺、作半径;
⑻、弦心距;
⑼、构造直径上的圆周角;
⑽、两圆相交时常连公共弦;
⑾、构造相交弦;
⑿、见中点连中点构造中位线;
⒀、两圆外切时作内公切线;
⒁、两圆内切时作外公切线;
⒂、作辅助图形(如勾股定理逆定理的证明中作辅助三角形);
初中数学解题思维方法大全相关 文章 :
1. 初中数学解题方法
2. 初中数学的解题方法
3. 初中数学方法有哪些
4. 初中数学学习好方法
5. 初中数学思想方法教学论文
Ⅳ 解决数学问题的常见思路方法有哪些
1、公式法:将公式直接运用到问题中,常用在代数问题中.解决该类问题必须记好数学公式.
2、逆推倒想法:由问题的结论推理到问题中的条件,常用在几何问题中.解决该类问题必须掌握好几何中的定义、公理、定理和推论等.
3、数形结合法:将问题转化成图形进行解决,常用在代数中的应用题中.
Ⅳ 解决数学问题的常见思路方法有哪些
1、公式法:将公式直接运用到问题中,常用在代数问题中。解决该类问题必须记好数学公式。
2、逆推倒想法:由问题的结论推理到问题中的条件,常用在几何问题中。解决该类问题必须掌握好几何中的定义、公理、定理和推论等。
3、数形结合法:将问题转化成图形进行解决,常用在代数中的应用题中。
Ⅵ 小学数学解决问题的思路和方法
小学数学解决问题的思路和方法如下:
1、形象思维方法
形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。
形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。
公式法:运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。
解题技巧:
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2. 特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
Ⅶ 解决数学问题的常见方法与思路有哪些
一、用字母表示数的思想
这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b
二、数形结合的思想
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。
6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想 (化归思想)
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.
四、分类思想
有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
Ⅷ 数学解决问题的方法
1、公式法:将公式直接运用到问题中,常用在代数问题中解决该类问题;
2、逆推倒想法:由问题的结论推理到问题中的条件,常用在几何问题中。解决该类问题必须掌握好几何中的定义、公理、定理和推论等;
3、数形结合法:将问题转化成图形进行解决,常用在代数中的应用题中。
总的来说,解决数学问题的方法有两种:综合法和分析法。
Ⅸ 小学数学解决问题方法大全
小学数学解决问题的 方法 有哪些?解决问题需要注意什么问题?要抓住什么要点?下面是我为大家整理的关于小学数学解决问题 方法大全 ,希望对您有所帮助。欢迎大家阅读参考学习!
1小学数学解决问题方法大全
(1)多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。
读题有利于学生对问题的理解,有助于通过语言描述看到问题解决的契机。对于问题意义表征受阻的学困生,有必要指导他们从“指读”(用笔尖指着题目,眼睛看着所指的文字读)开始,逐步养成边读边思考,反复读几遍,直至读懂的习惯。进一步,还可以指导他们划出题中已知的数学信息和所求问题,并在句中圈出关键词。
(2)把“大数”化“小”。
例如,一本书共369页,平均每天看41页,多少天看完?对有困难的学生,只要将原题改为:一本书24 页,平均每天看8 页,多少天看完?他们往往能脱口而出“3天”。再用“小步子”进行追问:用什么方法算?怎样列式?为什么这样列式?这两题有什么相同和不同?从而使学生领悟到,两题都是求一个数里面有几个几。
(3)联系生活,想象情境。
让学生想象自己是问题中的“小明”,进入情境,想象自己拿着20元钱去买票。从而增强学生身临其境的感受,有助于解决问题。以上三条策略,其实就是过去的读题、审题策略,现在依然非常实用。
(4)列表、画图。
表、图具有直观形象的特点,可以帮助学生简洁、明了、正确地表征问题,提高解决问题的能力。在用比例知识解决正反比例的问题时,学困生往往不清楚量与量之间的对应关系。可以引导学生列表来帮助理解。
2解决问题方法
(1)培养良好的审题习惯。一要审数和符号,二要审运算顺序,明确先算什么,后算什么。三要审计算方法的合理、简便,看能否简算,然后再动手解题。
(2)养成仔细计算、规范书写的习惯。按格式书写,数位对齐,字迹工整、不潦草,保持作业的整齐美观。
(3)养成估算和验算的习惯。这是计算正确的保证。验算是一种能力,也是一种习惯。
(4)强调检查。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。
(5)合理使用草稿纸。在打草稿的时候,要从左往右,从上到下,有序的打下去。一张写完,再翻一张,估计位置不够不要随意下笔换一个空间大的地方打草稿。检查时,也可从草稿入手。
3解决问题方法
1、仔细观察的习惯。通过课堂上仔细观察情境图、操作的过程,发展到留心观察周围事物的习惯。
2、敢于提问的习惯。教师要引导学生不耻下问,随时表扬那些敢于、善于提问题的同学。对于学生的问题,教师要耐心解答。课堂上把提问的权利还给学生。
3、多角度思考的习惯。遇到问题不要局限或拘泥于一个角度思考问题,而是从多个角度去探讨问题的答案,鼓励学生的 创新思维 、求异思维。
4、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。
如果学生养成了这几种好的习惯,学生的思维灵活度便会大大提高,理解能力也会跟着上升。
4解决问题方法
(1)合理强化。
在学困生不合理的知识结构问题解决之后,应进行相应的练习。实施练习的首要原则是增强针对性,做到缺什么补什么,什么弱强化什么;同时,注意及时强化与把握好强化的频率。
及时强化是根据遗忘曲线先快后慢的规律,使学生新获得的知识点和知识结构当堂巩固;强化的频率是指根据掌握、回生的实际情况,缩短或延长强化的周期,以促进问题解决方法的内化。
(2)分解强化。
为了让学困生形成比较稳定、清晰的思路,我们通常采用“分解强化”策略实施训练,即将问题分解为若干个“小步子”,为思维的清晰化提供一个支架,再逐渐将支架拆除。
(3)顺向加工策略。
顺向加工策略,是指不考虑一道题的特殊问题,而是整体考虑该类问题所含变量能组成多少种问题情境,予以全面呈现,一一练习,以此帮助学生有效地形成解决该类型问题的知识系统。
(4)在辅导学困生时,要注意强调第四个步骤。例如,一个圆锥形的模具,底面半径是75px,高是100px。它的体积是多少?学困生往往能选择公式V = 13Sh ,但是算式却列成1/3×3×4。原来,他们直觉地认为是三个数相乘,却忽略了公式的实际意义。因此,强调所需条件,提醒关注已知数据常常是必要的。
相关 文章 :
1. 小学数学解决问题策略
2. 小学数学教学方法有哪些问题
3. 小学数学的19种学习方法
4. 小学数学应用题解题方法
5. 小学数学学好的方法和技巧