导航:首页 > 解决方法 > 甲磺酸的液相检测方法

甲磺酸的液相检测方法

发布时间:2022-12-23 05:24:19

⑴ 求助三氟甲磺酸的含量测定的可行性分析

三氟甲磺酸作为催化剂在合成过程中用到,现在要控制其残留量,用GC尝试着去做了一下,因为其性质为超强酸,且沸点高,GC没有做出结果,文献有提到用离子色谱检测三氟甲烷磺酸根的方法,但未提及样品的处理方法。对于样品处理上及检测方法上,请做过的人和这方面的高手,给指点一下。急求!
物理性质
性状:无色液体,含杂质时为黄色或黄棕色液体,在空气中发烟。

沸点:167~170℃

蒸气密度:5.2 (空气=1)

熔点:-40℃

折射率:1.331(一说1.327)

密度:1.708 (一说1.696)

蒸气压:8 mmHg ( 25℃)

溶解性:极易溶于水;易溶于极性有机溶剂,如二甲基甲酰胺,乙腈和二甲基砜等。但是由于溶解过程剧烈放热,将它迅速加入极性溶剂中可能造成危险。

化学性质

三氟甲磺酸是有机酸最强的,酸性超过100%的硫酸,所以它属于超强酸。(三氟甲磺酸pKa=-15)。

具有强酸性和还原性。一般用作有机合成试剂。

当溶解有三氟化硼(BF3)、五氟化磷、五氟化砷等强路易斯酸时因为生成了稳定的配合酸:H[CF3SO3BF3]、H[CF3SO3PF5]、H[CF3SO3AsF5]从而酸性变得更强.

在空气中发烟,易吸水形成一水合物。

极易溶于水,融水释放出大量的热,水解生成三氟甲烷(CHF3)和硫酸。

加热条件下可与五氧化二磷反应得三氟甲磺酸酐(类似的,浓硫酸和五氧化二磷反应得三氧化硫)

⑵ 甲磺酸培氟沙星的含量测定

照高效液相色谱法(附录Ⅴ D)测定 色谱条件与系统适用性试验 用十八烷基硅烷键合硅胶为填充剂,以0.04mol/L磷酸二氢钾溶液-0.05mol/L四丁基溴化铵溶液-乙腈(80:8:9)(用磷酸调节pH值至2.5)为流动相,检测波长为277nm。理论板数按培氟沙星峰计算不低于2000。培氟沙星峰与相邻杂质峰间的分离度应符合要求。 测定法 取本品适量,精密称定,加水溶解并定量稀释制成每1m中含培氟沙星20μg的溶液,精密量取20μl注入液相色谱仪,记录色谱图;另取培氟沙星对照品,同法测定,按外标以峰面积计算出供试品中C17H20FN3O3的含量。

⑶ 环境监测里面,如果你要测一个污染物,比如说二氧化硫,怎么找到他的监测方法叻

实验十七

大气二氧化硫的测定

一、甲醛缓冲溶液吸收-盐酸副玫瑰苯胺分光光度法(
A
1


1
实验目的

1.1
掌握本方法的基本原理

1.2
巩固大气采样器及吸收液采集大气样品的操作技术。

1.3
学会用比色法测定
SO
2
的方法。

2
实验原理

二氧化硫被甲醛缓冲溶液吸收后,生成稳定的羟基甲磺酸加成化合物。在样品溶液
中加入氢氧化钠使加成化合物分解,释放出的二氧化硫与盐酸副玫瑰苯胺、甲醛作用,
生成紫红色化合物,根据颜色深浅,用分光光度计在
577nm
处进行测定。

本方法的主要干扰物为氮氧化物、臭氧及某些重金属元素。加入氨磺酸钠可消除氮
氧化物的干扰;采样后放置一段时间可使臭氧自行分解;加入磷酸及环己二胺四乙酸二
钠盐可以消除或减少某些金属离子的干扰。在
10mL
样品中存在
50µ
g
钙、镁、铁、镍、
锰、铜等离子及

g
二价锰离子时不干扰测定。

本方法适宜测定浓度范围为
0.003

1.07mg/m
3
。最低检出限为
0.2µ
g/10mL
。当用
10mL
吸收液采气样
10L
时,最低检出浓度为
0.02mg/m
3
;当用
50mL
吸收液,
24h
采气

300L
取出
10mL
样品测定时,最低检出浓度为
0.003mg/m
3


3
实验试剂

除非另有说明,
分析时均使用符合国家标准的分析纯试剂和蒸馏水或同等纯度的水。

3.1
氢氧化钠
(NaOH)
溶液,

1.5mo1/L
称取
60g NaOH
溶于
1000mL
水中。

3.2
环已二胺四乙酸二钠
(CDTA-2Na)
溶液,

0.05mo1/L
称取
1.82g
反式
1

2-
环已二胺四乙酸
[(trans-l

2-cyclohexylenedinitrilo)tetra-acetic acid,
简称
CDTA]
,加入氢氧化钠溶液
(3.1)6.5mL
,用水稀释至
100mL


3.3
甲醛缓冲吸收液贮备液:

1


A
)本方法与
GB/T15262

94
等效。

吸取
36
%~
38
%甲醛溶液
5.5mL

CDTA-2Na
溶液
(3.2)20.00mL
;称取
2.04g
邻苯二甲
酸氢钾,溶于少量水中;将三种溶液合并,再用水稀释至
100mL
,贮于冰箱可保存
1
年。

3.4
甲醛缓冲吸收液

用水将甲醛缓冲吸收液贮备液
(3.3)
稀释
100
倍而成。临用现配。

3.5
氨磺酸钠溶液,
6g/L
称取
0.60g
氨磺酸
(H
2
NS0
3
H)
置于
100mL
容量瓶中,加入
4.0mL
氢氧化钠溶液
(3.1)

用水稀释至标线,摇匀。此溶液密封保存可用
10
天。

3.6
碘贮备液,
C(1/2I
2
) =0.1mol/L
称取
12.7g

(I
2
)
于烧杯中,加入
40g
碘化钾
(KI)

25mL
水,搅拌至完全溶解,用水
稀释至
1000mL
,贮存于棕色细口瓶中。

3.7
碘溶液,
C(1/2I
2
)

0.05mol/L
量取碘贮备液
(3.6)250mL
,用水稀释至
500mL
,贮于棕色细口瓶中。

3.8
淀粉溶液,
5g/L
称取
0.5g
可溶性淀粉,用少量水调成糊状,慢慢倒入
100mL
沸水中,继续煮沸至溶
液澄清,冷却后贮于试剂瓶中。临用现配。

3.9
碘酸钾标准溶液,
C(1/6KIO
3
)

0.1000mol/L


称取
3.5667g
碘酸钾

KIO
3
优级纯,

110
℃干燥
2h
)溶于水,移入
1000m1
容量瓶
中,用水稀释至标线,摇匀。

3.10
盐酸溶液,
(1

9)
量取
1
份盐酸(
HCl
)和
9
份水混合均匀。

3.11
硫代硫酸钠
(Na
2
S
2
O
3
)
贮备液,
0.10mol/L


称取
25.0g
硫代硫酸钠
(Na
2
S
2
O
3
·
5H
2
O)
,溶于
1000mL
新煮沸但已冷却的水中,加入
0.2g
无水碳酸钠,贮于棕色细口瓶中,放置一周后备用。如溶液呈现混浊,必须过滤。

3.12
硫代硫酸钠
(Na
2
S
2
O
3
)
标准溶液,

0.05mol/L



250mL
硫代硫酸钠贮备液
(3.11)
置于
500mL
容量瓶中,用新煮沸但已冷却的水稀
释至标线,摇匀。

标定方法:吸取三份
10.00mL
碘酸钾标准溶液
(3.9)
分别置于
250mL
碘量瓶中,加
70mL
新煮沸但已冷却的水,

1g
碘化钾,
振摇至完全溶解后,

10mL
盐酸溶液
(3.10)

立即盖好瓶塞,摇匀。于暗处放置
5min
后,用硫代硫酸钠标准溶液
(3.12)
滴定溶液至浅

黄色,加
2mL
淀粉溶液
(3.8)
,继续滴定溶液至蓝色刚好褪去为终点。硫代硫酸钠标准溶
液的浓度按式
(1)
准确计算:

C

v
10.00
0.1000



1


式中:
C


硫代硫酸钠标准溶液的浓度,
mol/L


V


滴定所耗硫代硫酸钠标准溶液的体积,
mL


3.13
乙二胺四乙酸二钠盐
(EDTA-2Na)
溶液,
0.5g/L
称取
0.25g EDTA[

CH
2
N(CH
2
COONa)CH
2
COOH]
2
·
H
2
O
溶于
500mL
新煮沸但已冷却的水
中。临用现配。

3.14
二氧化硫标准待标液。

称取
0.200g
亚硫酸钠
(Na
2
SO
3
)

溶于
200mL EDTA·
2Na
溶液
(3.13)
中,
缓缓摇匀以防
充氧,使其溶解。放置
2

3h
后标定。此溶液每毫升相当于
320

400µ
g
二氧化硫。

3.15
标定方法

吸取三份
20.00mL
二氧化硫标准待标液
(3.14)

分别置于
250mL
碘量瓶中,
加入
50mL
新煮沸但已冷却的水,
20.00mL
碘溶液
(3.7)

1mL
冰乙酸,
盖塞,
摇匀。
于暗处放置
5min
后,
用硫代硫酸钠标准溶液
(3.12)
滴定溶液至浅黄色,
加入
2mL
淀粉溶液
(3.8)

继续滴定
至溶液蓝色刚好褪去为终点。记录滴定硫代硫酸钠标准溶液的体积
V

mL


另吸取三份
EDTA-2Na
溶液
(3.13)20mL
,用同法进行空白试验。记录滴定硫代硫酸
钠标准溶液
(3.12)
的体积
V
0

mL


平行样滴定所耗硫代硫酸钠标准溶液体积之差应不大于
0.04mL
。取其平均值。二氧
化硫标准溶液浓度按式
(2)
计算:

C

1000
20.00
32.02
C
V)
-
Vo
(
)
3
2
2
(Na



O
S


2


式中:
C


二氧化硫标准待标液的浓度,
µ
g/mL


V
0
——
空白滴定所耗硫代硫酸钠标准溶液的体积平均值,
mL


V
——
二氧化硫标准待标液滴定所耗硫代硫酸钠标准溶液的体积平均值,
mL


C
(Na2S2O3)
——
硫代硫酸钠标准溶液
(3.12)
的浓度,
mol/L


32.02
——
二氧化硫
(1/2SO
2
)
的摩尔质量。

3.16
二氧化硫的标准溶液贮备液

标定出二氧化硫标准待标液(
3.14

的准确浓度后,
立即用吸收液
(3.4)
稀释为每毫升

10.00µ
g
二氧化硫的标准溶液贮备液,可稳定
6
个月。
2 :

固定污染源废气-二氧化硫测定方法建议
固定源废气中二氧化硫的检测方法主要有:碘量法、定电位电解法、非分散红外吸收法,目前,环境监测部门对烟道内二氧化硫浓度的测定普遍采用定电位电解法来完成。其主要原理是二氧化硫气体在传感器的电解槽内发生氧化还原反应,通过产生的扩散电流确定二氧化硫浓度,此方法快捷、简便,但准确程度却受到多方面因素影响。 一、定电位电解法的工作原理
烟气中SO2 扩散通过传感器渗透膜,进入电解槽,在定电位电极上发生氧化还原反应:
SO2 + 2H2O = SO4-2 + 4H+ + 2e
由此产生极限扩散电流i,在一定范围内,其电流大小与SO2浓度成正比。即:

在规定工作条件下,电子转移常数Z、法拉第常数F、扩散面积S、扩散系数D 和扩散层厚度δ 均为常数,所以SO2 浓度由 极限电流i 决定。 二、 影响因素
影响SO2检测结果的主要因素:湿度、负压、干扰气体,其中干扰气体主要有:HF、H2S、NH3 、NO2、CO,其中CO对SO2检测结果的干扰最大。关于CO气体对SO,传感器的正干扰,国外传感器技术说明书指出:在300 ppm(375 mg/m³ )CO标气作用下,SO:输出“交叉干扰”值<5 ppm(14 mg/m³ )但固定污染源排放烟气中,CO的含量往往大于

void function(e,t){for(var n=t.getElementsByTagName("img"),a=+new Date,i=[],o=function(){this.removeEventListener&&this.removeEventListener("load",o,!1),i.push({img:this,time:+new Date})},s=0;s< n.length;s++)!function(){var e=n[s];e.addEventListener?!e.complete&&e.addEventListener("load",o,!1):e.attachEvent&&e.attachEvent("onreadystatechange",function(){"complete"==e.readyState&&o.call(e,o)})}();alog("speed.set",{fsItems:i,fs:a})}(window,document);

375 mg/m³ 、甚至远远大于375 mg/m³。从检测的数据中,有的CO浓度超过10 000 mg/m³。这种情况下,由于CO的存在导致SO:传感器显示的浓度比实际值增加,不能忽略不计了。CO与SO2在检测过程中的对比图如下:

从对比图可以看出一氧化碳对二氧化硫浓度测试的影响值是正值,影响率在3%左右。一般情况下,有燃烧过程的烟道排气中都含有不同浓度的一氧化碳气体,并随着工况的改变而改变。比如,锅炉在正常情况下,一氧化碳的浓度值差别也很大,从零到几千毫克/标立方米不等,所以对二氧化硫的干扰也从零到几十毫克,标立方米不等,正常情况下,目前所用烟气分析仪可以通过软件扣除一氧化碳对二氧化硫浓度的影响值,但在一氧化碳浓度波动很快的情况下,生物质锅炉在给料过多、配风过小、压负荷的情况下,一氧化碳浓度可以在这极短的时间内迅速从0上升到几万毫克,标立方米,这时仪器的软件

var cpro_psid ="u2572954"; var cpro_pswidth =966; var cpro_psheight =120;

则不能准确快速跟踪扣除干扰值,故此时二氧化硫的测量值则偏差极大,表2所列为几种不同浓度的一氧化碳气体对二氧化硫传感器的干扰数值。

三、碘量法检测原理
烟气中的SO2被氨基磺酸铵混合溶液吸收,用碘标准溶液滴定。按滴定量计算SO2的浓度,反应式如下:

四、非分散红外吸收法工作原理
二氧化硫气体在6.82~9μm波长红外光谱具有选择性吸收,一束恒定波长为7.3μm的红外光通过二氧化硫气体时,其光通量的衰减与二氧化硫的浓度符合朗伯-比尔定律。
综上所述,由于二氧化硫电化学传感器自身性能原因,不可避免地受到诸多因素干扰,所以在生物质锅炉SO2检测过程中建议采用碘量法或非分散红外吸收法减少CO对SO2检测值得干扰。 参考资料:
《国家环境保护总局标准固定污染源排气中二氧化硫的测定-定电位电解法》HJ/T57-2000

⑷ 手性化合物的保留时间相近吗

手性化合物液相色谱分析方法开发过程中,根据化合物的结构特点或者是进行初步的开发尝试,确定了影响分离有效性的关键因素如色谱柱的类型以及流动相的种类以及操作模式之后,就需要对是否需要使用添加剂以及哪一种添加剂做出选择,一些其他的操作条件诸如流速,色谱柱柱温等进行优化,以此获得良好的分离效果。

一般地,对于手性化合物液相色谱分析方法的开发,我们前期开发关注的主要内容有以下几个方面:选择性因子(α),主要体现分离度的大小;容量因子(k),主要体现保留时间的大小;拖尾因子(Tf),主要体现色谱峰的对称性,分别如下图1-1,图1-2以及图1-3所示。在同一个开发实例中,不一定需要同时对以上三个方面进行调整,需要根据具体的情况以及分析方法开发的接受标准而定。

Fig.1-1 Main factor of α in a chiral method development



Fig.1-2 Main factor of k in a chiral method development



Fig.1-3 Main factor of Tf in a chiral method development

影响选择性因子、容量因子以及拖尾因子的因素,既包括之前涉及的色谱柱、流动相、操作模式,也包括添加剂的种类、色谱仪器的使用条件(流速,柱温、溶解样品的溶剂的种类,样品的浓度与进样量以及DAD检测器的检测波长设置等因素。

2

添加剂的种类与选择

一般地,手性添加剂主要是指一些有机酸碱,如常用的有机碱:二乙胺(DEA),三乙胺(TEA),乙醇胺(ETA),异丙基胺(IPAm),N,N-二甲基乙醇胺(DMEA)等;常用的有机酸:甲酸(FA),三氟乙酸(TFA),乙酸(AceticAcid)等,此外还有一些不太常用到的有机酸如,甲磺酸(MSA),乙磺酸(ESA)添加在拆分碱性化合物的流动相中。

添加剂的添加的方式一般是根据手性化合物所含有的功能基团而定,一般地,酸性化合物添加有机酸类添加剂;碱性化合物添加有机碱类添加剂;两性离子化合物可以选择添加酸性或碱性添加剂甚至同时添加酸碱类添加剂,对于中性待分离的手性化合物而言,流动相中是否添加酸碱添加剂对其分离效果的影响可以忽略不计。

在流动相中添加酸碱有机添加剂的作用,无外乎以下几种作用中的一种或者多种:

(1) 抑制或者促进化合物的官能团的解离;

(2) 抑制固定相基体硅羟基的解离,减小二次相互作用,减小拖尾因子,提高色谱峰的对称性;

(3) 调节待分离化合物的容量因子,得到合适的保留时间;

(4) 调节某一方向上驱动力的大小,实现有效的分离;

一般地,有机酸碱的累计添加量不超过0.5%,否则可能会对色谱柱产生损害以至于减少色谱柱的实际使用寿命。



Fig.2-1 Effect of additives on the retention time

如上图2-1所示,待分离手性样品为含有羧基的有机酸类化合物,由于化合物本身呈现酸性,在流动相中不添加醋酸的时候,化合物本身由于解离呈现出强极性与色谱柱极性固定相之间呈现强结合作用,在40min内未被洗脱出来(如图2-1A所示)。当在流动相中添加0.1%的醋酸之后,由于添加的乙酸抑制了酸性化合物的解离,使得该化合物的极性降低,在10min内就实现了有效分离(如图2-1B所示)。



Fig.2-2 Effect of additives on the peak shape and tailing factor

而对于上面的碱性样品而言(如图2-2所示),在添加0.1%DEA之前,色谱峰如山包一样,保留时间跨度十分大(如图2-2A所示);而当添加了0.1%的DEA之后,不仅实现了基线分离而且色谱峰的峰形也十分对称(如图2-2B)。在这个例子中添加的DEA的作用可能有两个,其一是抑制碱性化合物的解离,其二是降低了该化合物的溶剂效应。

有机酸碱类添加剂除了影响手性化合物的保留时间以及改善色谱峰的对称性之外,亦会对手性化合物的分离选择性产生很大的影响,如下图3所示。



Fig.3 Effect of additives on the resolution between the peaks ofisomers

上图两个例子中,流动相的种类,添加剂以及色谱柱的类型完全一致,唯一的区别在于分析的化合物的结构上的差异。在图3a中,随着有机酸FA的添加比例的增加,化合物的保留时间减少且分离度变差;而在图3b中,随着有机酸FA的添加比例的增加,化合物的保留时间大幅度增加且分离度变大,实现了基线分离。

以上几个例子说明有机酸碱添加剂及其添加量不仅影响手性化合物色谱峰的拖尾因子以及保留时间同时也会对分离的选择性产生较大影响,而这些作用的程度与作用的方向与具体化合物的结构特点密切相关。

3

流速的影响

根据范式方程的图形示意图,如图4所示,不同的色谱柱均具有一个最佳的线速度范围,在该范围之内的理论塔板高度最低,且该范围随着填料颗粒粒径的减小而有所扩大。使用色谱柱供应商推荐的流速范围内的线速度,可以获得最大的理论色谱柱柱效,但需要注意一点,色谱柱的柱效达到最大的时候,对于手性化合物的拆分效果不一定是最好的。



Fig.4 Diagrammatic sketch for Van Deemter

如一根250mm的IC色谱柱(填料颗粒5um),其推荐的流速为1 mL/min左右,有很多时候,在推荐流速下,色谱峰不能实现良好的分离效果,通过降低流速,可以改善分离度达到基线分离,而此时的色谱柱的柱效,显然不是最大。再如,在推荐流速下,色谱峰之间的分离度远大于1.5,此时,我们可以通过增加流速的方式,减小分析物的保留时间,同时色谱峰的峰形收窄,峰宽降低,表观色谱柱柱效增加。

因此,对于流速的选择,需要根据所遇到的具体的分离情况进行选择,首先可以使用推荐的流速进行初始尝试,根据获得的色谱分离结果,适当调整流速的大小,获得良好的峰形以及分离度。

4

溶剂的选择

样品溶解所用溶剂对于手性分析方法的开发的最大影响在于溶剂效应,特别是在正相色谱中,更容易出现溶剂效应。如下图5所示,图中的实例均是溶剂效应的具体表现。



Fig.5 Solvent effect in the chiral method development

归根结底,溶剂效应是由于溶剂与流动相之间的差异过大,二次分配时间过长或者溶解性差异过大导致。一般地,溶剂效应的大小还与进样体积的大小有关,进样体积越大,溶剂效应越明显。



Fig.6 The example of Solvent effect

如上图6所示,待分离样品在以正己烷作为溶剂的时候,随着进样体积的增大,并没有出现明显的溶剂效应,而当改为极性溶剂如异丙醇或者甲醇之后,随进样体积的增加,溶剂效应变得很大。

避免溶剂效应,最好选用流动相作为溶剂或者与流动相混溶的溶剂,此外也与分析物以及固定相的性质有关。

5

结论

选择了合适的色谱柱,流动相的组成以及操作模式只是手性分析方法开发成功的必要条件,还需要对色谱仪器的操作条件进行优化,如流动相中的添加剂的种类以及添加量,流动相的流速的大小,溶解样品所用的溶剂等,均对分析方法主要关注点如分离度,拖尾因子,保留时间产生很大的影响。一般地,溶剂以及流动相添加剂的选择需要考虑化合物的结构以及所含有的官能团情况,而流动相的流速的选择,需要根据色谱峰分离情况做出调整,而不必要使色谱柱的理论柱效达到最大。

⑸ 请问如何检测甲基磺酸CH4SO3(甲磺酸)里,杂质氯离子CL-,硫酸根SO2-4的含量不胜感激!

原子吸光光度法。

⑹ 甲磺酸培氟沙星的增订内容


2010版中国药典修订增订内容
甲磺酸培氟沙星
Jiahuangsuan Peifushaxing
Pefloxacin Mesylate
书页号:2005年版二部-130
[修订]
【检查】溶液的澄清度与颜色 取本品5份,各0.58g,分别加水10ml使溶解,溶液应澄清无色;如显浑浊,与1号浊度标准液(附录Ⅸ B)比较,均不得更浓;如显色,与黄绿色5号标准比色液(附录Ⅸ A第一法)比较,均不得更深(供注射用)。
有关物质 取本品适量,用流动相溶解并稀释制成每1ml中约含培氟沙星0.2mg的溶液 ,作为供试品溶液 ;精密量取1ml,置100ml量瓶中,加流动相稀释至刻度,摇匀,作为对照溶液。照含量测定项下的色谱条件,取对照溶液20μl注入液相色谱仪,调节检测灵敏度,使主成分色谱峰的峰高为满量程的20%~25%,精密量取供试品溶液与对照溶液各20μl,分别注入液相色谱仪,记录色谱图至主成分峰保留时间的3倍。供试品溶液色谱图中如有杂质峰,单个杂质峰面积不得大于对照溶液峰面积的1/2,各杂质峰面积的和不得大于对照溶液主峰面积。
重金属 取炽灼残渣项下遗留的残渣,依法检查(附录Ⅷ H第二法),含重金属不得过百万分之十。
【含量测定】照高效液相色谱法(附录Ⅴ D)测定。
色谱条件与系统适用性试验 用十八烷基硅烷键合硅胶为填充剂;以0.04mol/L磷酸二氢钾溶液-0.05mol/L四丁基溴化铵溶液-乙腈(80∶8∶9)(用磷酸调节pH值至4.0)为流动相;流速为1ml/min;柱温40℃;检测波长为273nm。取培氟沙星对照品及诺氟沙星对照品各适量,用流动相溶解并稀释制成每1ml中含培氟沙星和诺氟沙星各约20&micro;g的混合溶液,取20μl注入液相色谱仪,出峰顺序依次为诺氟沙星、培氟沙星,,培氟沙星峰的保留时间约为15分钟,诺氟沙星峰与培氟沙星峰的分离度应不小于6.0,培氟沙星峰与相邻峰间的分离度应符合规定。
测定法 取本品适量,精密称定,用水溶解并定量稀释制成每1m中约含培氟沙星20μg的溶液,精密量取20μl注入液相色谱仪,记录色谱图;另取培氟沙星对照品,同法测定,按外标法以峰面积计算出供试品中C17H20FN3O3的含量。

⑺ 液相色谱流动相选择

我感觉应该用阳离子色谱来做 流动相可以选择 甲磺酸水溶液

⑻ 甲磺酸培氟沙星的分析操作

方法名称: 甲磺酸培氟沙星原料药-培氟沙星-高效液相色谱法
应用范围:
本方法采用高效液相色谱法测定甲磺酸培氟沙星原料药中培氟沙星的含量。
本方法适用于甲磺酸培氟沙星原料药。
方法原理: 供试品经水溶解并定量稀释,进入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长277nm处检测培氟沙星的峰面积,计算出其含量。
试剂: 1. 乙腈
2. 磷酸二氢钾溶液(0.04mol/L)
3. 四丁基溴化铵溶液(0.05mol/L)
4. 磷酸
仪器设备: 1. 仪器
1.1 高效液相色谱仪
1.2 色谱柱
十八烷基硅烷键合硅胶为填充剂,理论塔板数按培氟沙星峰计算应不低于2000。
1.3 紫外吸收检测器
2. 色谱条件
2.1 流动相:0.04mol/L磷酸二氢钾溶液 0.05mol/L四丁基溴化铵溶液 乙腈=80 8 9(用磷酸调节pH值至2.5)
2.2 检测波长:277nm
2.3 柱温:室温
试样制备: 1. 对照品溶液的制备
精密称取培氟沙星对照品适量,加水溶解并定量稀释成每1mL中约含培氟沙星20&micro;g的溶液,即为对照品溶液。
2. 供试品溶液的制备
精密称取供试品适量,加水溶解并定量稀释成每1mL中约含培氟沙星20&micro;g的溶液,即为供试品溶液。
注:“精密称取”系指称取重量应准确至所称取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。
操作步骤: 分别精密吸取对照品溶液和供试品溶液各20mL,注入高效液相色谱仪,用紫外吸收检测器于波长277nm处测定培氟沙星(C17H20FN3O3)的峰面积,计算出其含量。
参考文献:中华人民共和国药典,国家药典委员会编,化学工业出版社,2005版,二部,p.130。

⑼ 请问三氟甲磺酸的检测方法

CF3-SO2-OH 此为结构简式, F O F-C-S-OH 此为结构式,硫与上下两个氧是双键,碳与三个氟是单键 F O

⑽ 复方阿米三嗪片的药物分析

方法名称:
复方阿米三嗪片—二甲磺酸阿米三嗪和萝巴新的测定—高效液相色谱法
应用范围:
本方法采用高效液相色谱法测定复方阿米三嗪片中二甲磺酸阿米三嗪和萝巴新的含量。
本方法适用于复方阿米三嗪片。
方法原理:
供试品经加流动相超声提取后,提取液进入高效液相色谱仪进行色谱分离,用紫外吸收检测器,于波长222nm处检测二甲磺酸阿米三嗪和萝巴新的吸收值,计算出其含量。
试剂:
甲醇
仪器设备:
1. 仪器
1.1 高效液相色谱仪
1.2 色谱柱
十八烷基硅烷键合硅胶为填充剂,理论塔板数按二甲磺酸阿米三嗪和萝巴新分别计算均不低于900。
1.3 紫外吸收检测器
2. 色谱条件
2.1 流动相:甲醇 水 =85 15,每1000mL中加二乙胺5μL。
2.2 检测波长:222nm
2.3 柱温:室温
试样制备:
1. 称取供试品
取本品10片,精密称定,研细,精密称取适量(约相当于二甲磺酸阿米三嗪30mg和萝巴新10mg)。
2. 对照品溶液的制备
精密称取二甲磺酸阿米三嗪和萝巴新对照品适量,加流动相溶解并定量稀释制成每1mL约含二甲磺酸阿米三嗪0.3mg和萝巴新0.1 mg的溶液。
3. 供试品溶液的制备
将上述供试品置于100mL量瓶中,加流动相适量,超声处理30分钟,放冷,用流动相稀释至刻度,摇匀,滤过,即得。
注:“精密称取”系指称取重量应准确至所取重量的千分之一。“精密量取”系指量取体积的准确度应符合国家标准中对该体积移液管的精度要求。
操作步骤:
分别精密吸取上述对照品溶液与供试品溶液各20μL 注入高效液相色谱仪,用紫外吸收检测器,于波长222nm处测定二甲磺酸阿米三嗪和萝巴新的吸收值,计算出其含量。
参考文献:
中华人民共和国药典,国家药典委员会编,化学工业出版社,2005年版,二部,p.428。

阅读全文

与甲磺酸的液相检测方法相关的资料

热点内容
学生提分方法怎么写 浏览:306
国标中检测金葡萄球菌的三种方法 浏览:805
文言文划分停顿的方法有哪些 浏览:343
检测酶活性方法 浏览:228
常用心理测验的应用方法 浏览:520
快速取戒指的方法 浏览:518
紫甘蓝正确服用方法 浏览:751
喉原位癌早期浸润的治疗方法 浏览:299
桂花树苗嫁接方法视频 浏览:956
如何判断出货方法 浏览:627
每个模块那么多方法如何记 浏览:6
巯基乙酸单甘油酯检测方法 浏览:147
尖锐疣治疗的方法 浏览:800
使用什么方法解决 浏览:802
搓澡神器使用方法 浏览:388
闭角青光眼后期治疗方法 浏览:724
清洗瓷砖方法有哪些 浏览:557
汽车漆面划痕有什么补救方法 浏览:761
快速洗纹身方法 浏览:979
女性夜尿多锻炼方法 浏览:446