导航:首页 > 解决方法 > 山西成分检测方法

山西成分检测方法

发布时间:2022-12-21 13:19:23

A. 谁能告诉我新鲜马铃薯中淀粉含量怎么测定,.谢谢了

马铃薯品种淀粉含量、淀粉产量及淀粉组成的评价 摘要:试验选用北方一作区8个当地主栽的马铃薯品种,在哈尔滨委员会评价各种的淀粉含量。淀粉产量和淀粉组成状况。试验结果表明:克新世界12号和延薯3号2个品种比较适合哈尔滨的气候和环境条件,具有较高的淀粉含量和淀粉产量。各品种马铃薯淀粉组成中直链淀粉和支链淀粉含量比例不同。直链淀粉含量低于25%的品种有:延薯3号、克新12号、尤金和陇薯3号。直链淀粉含量高于25%的品种有:晋薯11号、坝薯8号、青薯2号和东农303。 关键词:马铃薯、淀粉含量、淀粉含量;直链淀粉、支链淀粉 马铃薯块茎淀粉含量是变化的数量性状,受多基因控制,除了品种本身固有的特性之外,在很大程度上取决于外界条件,例如自然气象条件、土壤肥力、栽培管理水平和块茎的成熟等因素都会影响到块茎淀粉积累。马铃薯淀粉与其它种类淀粉在物理化学性能及应用上均存在较大的差异。马铃薯颗粒大,含有天然磷酸基团。糊化温度较低、糊粘度高、弹性好,蛋白质含量低、无刺激、口味温和,颜色较白,不易凝胶和不易退化等特性,在一些行业中具有其它淀粉不可替代的作用。因此,马铃薯淀粉、变性淀粉以其独特的性质和优越性被广泛应用于食品、建筑、石油开采和其它领域。 本试验选用在我国马铃薯主要种植区域的北方一作区栽培面积较大、在淀粉加工中广为利用的8个马铃薯品种,在哈尔滨的区种植观察不同品种的淀粉含量、淀粉产量及直链淀粉含量等性状的表现,以期为本地的马铃薯种植者和加工者积累基础数据,为优质淀粉的生产及相关品种的选择提供理论依据。 1材料与方法 1.1试验材料 供试的8个马铃薯品种为东农303、尤金、坝薯8号、晋薯11号、陇薯3号、克新12号、青薯2号和延薯3号。田间播种材料为原种,小整薯播种,薯块重20g左右。 1.2田间试验方法 田间排列彩随机区组设计,3次重复,4行区,小区面积为21㎡,种植100株,行株距分别为0.7m和0.3m。 1.3品质分析方法 淀粉含量的测定 采用水比重法。 淀粉的制备:洗净的鲜薯先切成丁,再用组织捣碎,然后将适量试样放于80目筛上冲洗,其纤维素等残留于筛上,蛋白质、无机盐、糖果、可溶性物质留于水中,称为淀粉乳,而淀粉沉淀于下层,再过100筛,将沉淀粉物用蒸馏水充分洗涤后,静止6-7h,下层淀粉水量降至50%左右,用真空泵滤机吸滤,使含水量降至40%左右,经脱水后的淀粉可利用日光晒干或放于干燥箱中进行干燥,干燥的温度在≤40℃,干燥的时间25-60min。 直链淀粉和支链淀粉含量的测定:直链淀粉含量采用碘蓝比色法测定,支链淀粉含量通过总淀粉含量减去直链淀粉含量求得。 1.4结果与分析 2.1 不同马铃薯品种的淀粉含量和淀粉产量 表1列出了参试各马铃薯品种的淀粉含量和淀粉产量. 表1 不同马铃薯品种的淀粉含量和淀粉产是 品种 淀粉含量(%) 产量(kg.667m-2) 淀粉产量((kg.667m-2) 东农303 11.0g 1832.8a 201.7e 克新12号 16.5b 1680.6ab 277.2a 尤金10.5h 1219.4d 128.3d 延薯3号 17.4a 1371.8cd 238.4b 坝薯8号 12.4e 1562.8bc 193.8c 晋薯11号 11.2f 1600.3abc 179.8c 青薯2号 13.9d 1241.1d 172.5c 陇薯3号 14.2c 1237.0d 175.c 从表1可以看出,各参试品种的淀粉含量与产量均存在显着差异,最终导致单位面积上的淀粉产量也出现显着差异。淀粉含量最高的品种是延薯3号,平均淀粉含量达17.4%,显着高于所有参试品种;其次是克新12号,平均淀粉含量可达16.5%;其 参试品种按淀粉含量从高到低依次为陇薯3号、青薯2号、坝薯8号、晋薯11号、东农303尤金。产量最高的品种为东农303,667 m-2平均产量达1832.8kg;其次是克新12号和晋薯11号,平均产量分别为1680.6 kg和1600.3 kg;这三个品种间的产量差异未达到显着水平.淀粉产量最高的品种为克新12号,667㎡平均淀粉产量达277 kg,显着高于所有参试品种,其次是延薯3号,平均淀偻产量为238 kg,与其它参试品种间的淀粉产量差异显着,平均淀粉产量最低的为尤金,显着低于所有参试品种,其它参试品种的淀粉产量间差异不显着. 可见,淀粉产量是评价马铃薯品种淀粉可利用率的综合性状,是比淀粉含量更有意义的指标。要获得较高的淀粉产量,首先必须以具备一定的块茎产量为前提,否则即便淀偻含量再高,在生产上也没有任何推广价值。因此在生产中需要淀粉含量和块茎产量都高的品种。 2.2不同品种马铃薯淀粉中的直链淀粉和支链淀粉含量 马铃薯淀粉中72%-82%是支链淀粉,淀粉组成中直链淀粉含量较低。表2列出了参试品种淀粉组分中直链淀粉和支链淀粉的含量。 表2 不同品种马铃薯淀粉中直链淀粉和支链淀粉含量度 品种 直链淀粉含量(%) 支链淀粉含量(%) 东农303 25.1c 74.9 克新12号 24.7c 75.3 尤金24.9c 75.1 延薯3号 23.3d 76.7 坝薯8号 26.7b 73.3 晋薯11号 27.2a 72.8 青薯2号 25.1c 74.9 陇薯3号 25.0c 75.0 从表中数据可以年出,参试品种中直链淀粉含量最高的是晋薯11号,平均直链淀粉含量达27.2%;其次是坝薯8号,平均直链淀粉含量26.7%;直链淀粉含量最低是延薯3号,平均直链淀粉含量为23.3%,与所有参试品种间的差异均达显着水平。可见,不同品种的直链淀粉和支链淀粉含量存在真实的差异。 3讨论 马铃薯淀粉加工一直是马铃薯加工业中所占比重较大的部分,选育淀粉含量较高、产量适中的淀粉加工专用型品种是我国马铃薯育种者长期以来坚持的育各目标之一。但马铃薯的产量与淀偻含量是一对相互矛盾的数量性状,除了品种自身的特性外,还极易受到环境和气候条件的影响。因此,育各和引各过程中尤其要重环境和气候条件的影响,在大面积引种前一定要进行小范围的试验,才能保证减少盲目引种可能带来的风险。 马铃薯品种受纬度等地理条件的限制较小,但品种自身的特性又决定了它必有一个最佳的栽培区域。同是高淀粉的品种,在不同地区种植淀粉含量会有显着的差异。本试验即表现出各品种在哈尔滨地区种植的淀粉含量与育成地点的淀粉含量有一定的差异,有些品种差异还很大。多数品种的淀粉含量有所下降,其中下降较大的品种有陇薯3号和青薯2号;其次为晋薯11号和尤金;淀粉含量变化较小的有东农303、克新12号和坝薯8号。导致这种变化的原因之一是本地区今年生育期间雨量较大,低温多雨的气候条件影响块茎中淀粉的累积。而淀粉含量变化幅度较大的陇薯3号和青薯2号,也可能是由于引种区域跨度较大导致生育期缩短,使这两个品种不能达到正常成熟。早熟品种东农303和尤金由于植株对晚疫病抗性较弱,造成淀粉含量较低。 在本次试验中,各参试品种淀粉含量由高到低依次为:延薯3号、克新12号、青薯2号、坝薯8号、陇薯3号、晋薯11号、东农303和尤金。不同品种马铃薯淀粉中直链淀粉和支链淀粉比例不同。直链淀粉含量低于25%的品种有:延薯3号、克新12号、尤金和陇薯3号,直链淀粉含量高于25%的品种有:青薯2号、坝薯8号、晋薯11号和东农303。克新12号和延薯3号的淀粉含量和淀粉产量均较高,我们可以初步认定这两个品种为哈尔滨地区淀粉加工的优先品种。直链淀粉、支链淀粉的比例对马铃薯的加工性能有一定的影响,所测样品中直链淀粉的比例普遍较低,有利于保证马铃薯淀粉加工产品的质量

B. 山西水垢检测 我想检测一下地下水的水垢成分,应该去哪儿化验

自然界的水总是溶解一些矿物质的,其中主要成份是碳酸钙(镁)和碳酸氢钙(镁)含量的多少称为“硬度”,用 毫克/升为单位,表示水的硬度。

碳酸氢钙(镁)是暂时硬度,在水加热至沸腾时,分解变为碳酸盐,也成为永久硬度。

但是水对碳酸钙(镁)的溶解度是一定的,多余的就析出为沉淀,就是常见的水垢。
肥皂在井水、泉水、海水里容易生成“豆腐渣”。开水壶用久了,内壁会长出一层厚厚的水垢。这些现象说明,看起来清亮透彻的水里确实有杂质。

雨降落到地面,涓涓细流汇成江河,穿过山脉,越过平原,冲刷着土壤和岩石,溶解了不少矿物质。井水、泉水等地下水中含有更多的矿物质。如果我们在一块干净的玻璃片上滴上一滴水,等到水滴干后,玻璃片上留下水痕。这就是水里溶解了矿物质。

含有钙镁盐类等矿物质的水叫做“硬水”。河水、湖水、井水和泉水都是硬水。自来水是河水、湖水或者井水经过沉降,除去泥沙,消毒杀菌后得到的,也是硬水。刚下的雨雪,水里不含矿物质,是“软水”。水烧开后,一部分水蒸发了,本来不好溶解的硫酸钙(石膏就是含结晶水的硫酸钙)沉淀下来。原来溶解的碳酸氢钙和碳酸氢镁,在沸腾的水里分解,放出二氧化碳,变成难溶解的碳酸钙和碳酸镁(它们是石灰石、白云石的主要成分)也沉淀下来。这就是水垢的来历。 用硬水洗衣服的时候,水里的钙镁离子和肥皂结合,生成了脂肪酸钙和脂肪酸镁的絮状沉淀,这就是“豆腐渣”的来历。在硬水里洗衣服,浪费肥皂。水壶里长了水垢,不容易传热,浪费燃料。这些对于一个家庭来说,浪费还不算严重。对于工厂来说,问题就大啦。工厂供暖供汽用的大锅炉,有的每小时要送出好几吨蒸汽,相当于烧干几吨水。据试验,一吨河水里大约有1.6公斤矿物质;而一吨井水里的矿物质高达30公斤左右。一夭输送几十吨蒸汽,硬水在锅炉内壁沉积出的水垢数量,又该多么惊人!大锅炉里结了水垢,好比锅炉壁的钢板和水之间筑起一座隔热的石墙。锅炉钢板挨不着水,炉膛的火一个劲地把钢板烧得通红。这时候,如果水垢出现裂缝,水立即渗漏到高温的钢板上,急剧蒸发,造成锅炉内压力猛增,就要发生爆炸。锅炉爆炸的威力,不亚于一颗重磅炸弹!可见水垢的危害,决不能等闲视之!因此,在工厂里,往往在水里加入适量的碳酸钠,使水中的钙镁盐类变成沉淀除去,水就变成了软水。使硬水通过离子交换树脂,也能除去其中的矿物质,得到软水。家里的水壶、暖水瓶里长了水垢,怎么清除干净呢? 小心地将水壶烧到刚刚要干,立即浸到凉水里。这一热一冷,由于铝和水垢热胀冷缩的程度不同,水垢就会碎裂,从壶壁上籁籁落下。水垢的主要成分是碳酸钙、碳酸镁,它们可以和酸起化学变化。根据这个道理,在水壶里倒些食醋,在火上温热一下,只见水垢上放出密密麻麻的小气泡,水垢便粉碎了。用稀盐酸也能除水垢。稀盐酸“消化”碳酸钙的能力比食醋强,不过,操作起来要十分小心,别让盐酸把手也腐蚀坏了。要知道,盐酸和铝很容易起反应。如果是搪瓷水壶,搪瓷又未脱落,用稀盐酸除水垢当然好。暖水瓶里的水垢这样除去,更没问题了。

C. 食醋中醋酸含量的测定是怎么样的

食醋中醋酸含量的测定方法:

(1)用25.00mL移液管吸取食用醋试液一份,置于250mL容量瓶中,用水稀释至刻度,摇匀。

(2)用移液管吸取25.00mL稀释后的试液,置于250mL锥形瓶中,加入0.2%酚酞指示剂1-2滴,用NaOH标准溶液滴定,直到加入半滴NaOH标准溶液使试液呈现微红色,并保持半分钟内不褪色即为终点。

(3)重复操作,测定另两份试样,记录滴定前后滴定管中NaOH溶液的体积。测定结果的相对平均偏差应小于0.2mL。

(4)根据测定结果计算试样中醋酸的含量,以g/L表示。

简介

醋是用各种酵后产生的酸味调味剂,化学式:CH3COOH,是弱电解质。酿醋主要使用大米或高梁为原料。适当的酵可使用含碳水化合物(糖、淀粉)的液体转化成酒精和二氧化碳,酒精再受某种细菌的作用与空气中氧结合即生成醋酸和水。

所以说,酿醋的过程就是使酒精进一步氧化成醋酸的过程。食醋的味酸而醇厚,液香而柔和,它是烹饪中一种必不可少的调味品,主要成分为乙酸、高级醇类等。

现用食醋主要有“米醋”、“熏醋”、“特醋”“糖醋”、“酒醋”、“白醋”等,根据产地品种的不同,食醋中所含醋酸的量也不同,一般大概在5~8%之间,食醋的酸味强度的高低主要是其中所含醋酸量的大小所决定。例如山西老陈醋的酸味较浓,而镇江香醋的酸味酸中带柔,酸而不烈。

D. 铁镍中的镍的测定方法

一、 测定方法
石墨炉原子吸收分光光度法
二、 方法依据
《生活饮用水卫生规范》(2001)
三、 测定范围
1.适用于生活饮用水其水源中镍的测定
2.最低测质量为49.6pg,若取20μL水样测定,则最低检测浓度为2.48 μg/L.
3.水中共存离子一般不产生干扰.
四、 测定原理
样品经适当处理后,注入石墨炉原子化器,所含的金属离子在石墨管内经原子化高温蒸发解离为原子蒸气,待测元素的基态原子吸收来自同种元素空心阴极灯发出的共振线,其吸收强度在一定范围内与金属浓度成正比。
五、 试剂
5.1镍标准储备溶液;称取1克金属镍(高纯或光谱纯),溶于10mL硝酸溶液(1+1)中,加热驱除二氧化氮,用水定容至1000mL。此溶液ρ(Ni)=1mg/mL。
5.2镍标准中间溶液:取镍标准储备溶液5 mL 于100mL溶量瓶中,用硝酸溶液(1+99)稀释至刻度,摇匀,此溶液ρ(Ni)=50μg/mL。
5.3镍标准使用溶液:取镍标准中间溶液2 mL于100 mL容量瓶中,用硝酸溶液(1+99)稀释至刻度,摇匀,此溶液ρ(Ni)=1μg/mL。
5.4硝酸镁(50g/L):称取优级纯硝酸镁[Mg(NO3)2]5g,加水溶解并定容至100 mL。
六、 仪器设备
6.1仪器
6.1.1石墨炉原子吸收分光光度计。
6.1.2镍元素空心阴极灯。
6.1.3氩气钢瓶。
6.1.4微量加样器,20μL。
6.1.5聚乙烯瓶,100mL。
6.2仪器参数
测定镍的原子化条件
干 燥 灰 化 原 子 化
元素 波长nm ---------- -------- -------
温度,℃ 时间,S 温度,℃ 时间,S 温度℃ 时间S
---------------------------------------
Ni 232.0 120 30 1400 30 2400 5
七、 分析步骤
7.1吸取镍标准使用溶液0,0.5,1.00,2.00,3.00mL于5个100mL容量瓶内,分别加入硝酸溶液1.0mL,用硝酸溶液(1+99)稀释至刻度,摇匀,分别配制成ρ(Ni)=0,5,10,20和30ng/mL的标准系列。
7.2吸取10mL水样,加入硝酸镁溶液0.1mL,同时取10mL硝酸溶液(1+99),加入硝酸镁溶液0.1mL,作为试剂空白。
7.3仪器参数设定后依次吸取20μL试剂空白,标准系列和样品,注入石墨管,启动石墨炉控制程序和记录仪,记录吸收峰值或峰面积,每测定10个样品之间,加测一个内控样品或相当于工作曲线中等浓度的标准溶液。
八、 计算
从吸光度----浓度工作曲线查出镍浓度后,按下式计算
ρ(Ni)= ρ1×V1 /V
其中:ρ(Ni)----水样中镍的质量浓度,μg/L;
ρ1----从工作曲线上查得试样中镍的质量浓度,μg/L ;
V1----测定样品的体积,mL;
V----原水样体积,mL。

E. 工业用煤的国家标准是什么

工业用煤主要是烟煤,烟煤的种类也较多,主要有以下的各种类型。

长焰煤:长焰煤是最年轻的烟煤。呈弱粘结性的长焰煤在低温干馏时能析出较多的焦油。—般用作动力、民用燃料,气化原料,也可供低温干馏生产半焦或炼油原料。主要产地有甘肃的靖运、河南的义马、陕西的彬县、辽宁的阜新、抚顺,山西的大同及平朔等。

瘦煤:瘦煤属中高等变质烟煤,加热时能产生少量的胶质体,软化温度高,可以单独炼焦,结成的焦炭块度大,裂纹少,熔解较差,耐磨强度低。主要产地有陕西的铜川、韩城、蒲白和澄合等煤矿,河南的平顶山,河北的峰峰煤矿等。

不粘煤:不粘煤在焦化中不结焦,煤的水分有时高达10%以上,一般用作动力及民用燃烧,也可作气化用煤。主要产地有辽宁的阜新、陕西的神府等。

气煤:气煤属低等变质烟煤,加热时有较多的挥发物和焦油析出,胶质体的热稳定性差。气煤能单独炼焦,但焦炭细长而易碎,配煤炼焦可以增加煤气生产率和提高副产品回收率。主要产地有山西的大同、黑龙江的鹤岗、江西的乐平,陕西的黄陵等地。

焦煤:焦煤属中等变质烟煤,加热时能产生稳定性很好的胶质体。焦煤是优质的炼焦原料,用焦煤单独炼焦时,所得焦炭块度大、裂纹少;机械强度和耐磨强度都很高,但由于膨胀压力大,用大型炼焦炉生产时,易造成推焦困难。主要产地有河北的开滦、峰峰,江苏的大屯,安徽的两淮、山西的轩岗和黑龙江的双鸭山等煤矿。

肥煤:肥煤属中等变质的烟煤,加热时能产生大量的胶质体。在炼焦过程中,煤的软化、固化温度的间隔较大,用肥煤单独炼焦时能产生熔解性良好的焦炭。但裂纹较多,焦炭易成小块,机械强度及耐磨强度均差,多用作配煤炼焦的主要成分。主要产地有山东的究州,河南的平顶山和山西的霍县等。

除了烟煤以外,我国其它的煤炭品种尚有:

烛煤:有一种炭,用纸就可点燃,并发出明亮的光焰,像蜡烛一样,因此人们称它为烛煤。烛煤通常呈灰黑色或褐色,光泽也较暗淡,有时略带油脂光泽,断口呈贝壳状,含植物小袍子较多,可含少量藻类,也可能不含。烛煤挥发物含量和焦油产出军较高。主要产地:山西的浑源、大同,山东的新滇、兖州和枣庄。

藻煤:有—种光泽暗淡、结构均一、呈块状构造、韧性较大、易燃、有沥青味的煤;在显微镜下观察,可见它主要是由密集的藻类组成的,也含有少量粘土矿物,这就是藻煤。藻煤的挥发物氢含量高、焦油产出宰高,但有时灰分也高。主要产地:山西的浑源、蒲县,山东的肥城和兖州。

弱钻煤:弱粘煤是隔绝空气加压时产生的。胶质体很少,有时也可单独炼焦,但焦炭多呈小块,易粉碎。炼焦时可小量配用。它的主要用途是作气化原料和机车、发电厂燃料。主要产地有陕西的彬(县)长(武)矿区、铜川的焦坪等。

煤精:煤精是煤的一个特殊品种,煤精又称煤玉、炭精、灰根、乌玉、墨石、煤根石、墨精石等。它同普通煤一样可以燃烧,其主要特点是质地致密,具有一定的韧性,不透明,黝黑闪亮,抛光后呈玻璃光泽,硬度2.4—4,相对密度1.3—1.35,可用作工艺雕刻制品原料;实物资料证实,有些煤精制品及其坯料被埋在地下数百年乃至数千年,仍保存完好,没有风化、龟裂现象。沈阳新东遗址发掘出来的煤精雕刻制品,是我国从六七千年前石器时代就已开始利用煤炭的直接证据。

无烟煤:无烟煤是变质最深的矿产煤,含碳量通常高达90%一98%,而可燃基氢含量很低,一般<4%,它的化学反应性较低,光泽强、硬度高,常常供作民用燃料。但有些化学反应性较强,热稳定性较高的无烟煤,可用作化学作合成的原料。而低灰、低硫的老年无烟煤则是生产碳素制品的重要原料。无烟煤主要产地有宁夏的汝箕沟,山西的晋城、阳泉,河南的焦作、郑州,贵州的毕节地区等。

褐煤:褐煤是未经变质的煤,其化学反应性强,放在空气中极易风化而破碎成小块,热稳定差,块煤加热后破碎严重,多作民用燃料或煤化工产品,如褐煤腊、硝基腐植酸铵等。主要产地有内蒙古伊敏河、霍林河、大雁、元宝山、准噶尔,云南小龙潭、昭通等。
(http://www.6chem.com/04.asp?classfirst=%C3%BA%BB%AF%B9%A4&classtwo=%CA%D0%B3%A1%B5%F7%D1%D0&id=188)

煤炭质量分析-相关国家标准目录
DL/T 465-1992 煤的冲刷磨损指数试验方法 查看
DL/T 498-1992 粉煤灰游离氧化钙测定方法 查看
DL/T 660-1998 煤灰高温黏度特性试验方法 查看
DZ 48-1987 岩石中有机碳分析方法 查看
GB 14181-1997 测定烟煤粘结指数专用无烟煤技术条件 查看
GB 189-1963 煤炭粒度分级 查看
GB 2566-1995 低煤阶煤透光率测定方法 查看
GB 4632-1997 煤的最高内在水分测定方法 查看
GB 474-1996 煤样的制备方法 查看
GB 475-1996 商品煤样采取方法 查看
GB 5751-1986 中国煤炭分类 查看
GB/T 11957-2001 煤中腐植酸产率测定方法 查看
GB/T 1341-2001 煤的格金低温干馏试验方法 查看
GB/T 14181-1993 测定烟煤粘结指数专用无烟煤技术条件 查看
GB/T 15334-1994 煤的水分测定方法 微波干燥法 查看
GB/T 15458-1995 煤的磨损指数测定方法 查看
GB/T 15459-1995 煤的抗碎强度测定方法 查看
GB/T 15460-1995 煤中碳和氢的测定方法 电量-重量法 查看
GB/T 1572-2001 煤的结渣性测定方法 查看
GB/T 1573-2001 煤的热稳定性测定方法 查看
GB/T 1574-1995 煤灰成分分析方法 查看
GB/T 1575-2001 褐煤的苯萃取物产率测定方法 查看
GB/T 16415-1996 煤中硒的测定方法 氢化物发生原子吸收法 查看
GB/T 16416-1996 褐煤中溶于稀盐酸的钠和钾测定用的萃取方法 查看
GB/T 16658-1996 煤中铬、镉、铅的测定方法 查看
GB/T 16659-1996 煤中汞的测定方法 查看
GB/T 18510-2001 煤和焦炭试验可替代方法确认准则 查看
GB/T 18511-2001 煤的着火温度测定方法 查看
GB/T 18666-2002 商品煤质量抽查和验收方法 查看
GB/T 18855-2002 水煤浆技术条件 查看
GB/T 18856.1-2002 水煤浆质量试验方法 第1部分:水煤浆采样方法 查看
GB/T 18856.10-2002 水煤浆质量试验方法 第10部分:水煤浆灰熔融性测定方法 查看
GB/T 18856.11-2002 水煤浆质量试验方法 第11部分:水煤浆碳氢测定方法 查看
GB/T 18856.12-2002 水煤浆质量试验方法 第12部分:水煤浆氮测定方法 查看
GB/T 18856.13-2002 水煤浆质量试验方法 第13部分:水煤浆灰成分测定方法 查看
GB/T 18856.14-2002 水煤浆质量试验方法 第14部分:水煤浆PH值测定方法 查看
GB/T 18856.2-2002 水煤浆质量试验方法 第2部分:水煤浆浓度测定方法 查看
GB/T 18856.3-2002 水煤浆质量试验方法 第3部分:水煤浆筛分试验方法 查看
GB/T 18856.4-2002 水煤浆质量试验方法 第42部分:水煤浆表观粘度测定方法 查看
GB/T 18856.5-2002 水煤浆质量试验方法 第5部分:水煤浆稳定性测定方法 查看
GB/T 18856.6-2002 水煤浆质量试验方法 第6部分:水煤浆发热量测定方法 查看
GB/T 18856.7-2002 水煤浆质量试验方法 第7部分:水煤浆工业分析方法 查看
GB/T 18856.8-2002 水煤浆质量试验方法 第8部分:水煤浆全硫测定方法 查看
GB/T 18856.9-2002 水煤浆质量试验方法 第9部分:水煤浆密度测定方法 查看
GB/T 211-1996 煤中全水分的测定方法 查看
GB/T 212-1991 煤的工业分析方法 查看
GB/T 212-2001 煤的工业分析方法 查看
GB/T 213-1996 煤的发热量测定方法 查看
GB/T 214-1996 煤中全硫的测定方法 查看
GB/T 215-1996 煤中各种形态硫的测定方法
GB/T 216-1996 煤中磷的测定方法 查看
GB/T 217-1996 煤的真相对密度测定方法 查看
GB/T 218-1996 煤中碳酸盐二氧化碳含量的测定方法 查看
GB/T 219-1996 煤灰熔融性的测定方法 查看
GB/T 220-2001 煤对二氧化碳化学反应性的测定方法 查看
GB/T 2565-1998 煤的可磨性指数测定方法(哈德格罗夫法) 查看
GB/T 2566-1995 低煤阶煤的透光率测定方法 查看
GB/T 3058-1996 煤中砷的测定方法 查看
GB/T 3558-1996 煤中氯的测定方法 查看
GB/T 4633-1997 煤中氟的测定方法 查看
GB/T 4634-1996 煤灰中钾、钠、铁、钙、镁、锰的测定方法(原子吸收分光光度法) 查看
GB/T 476-1991 煤的元素分析方法 查看
GB/T 476-2001 煤的元素分析方法 查看
GB/T 478-2001 煤炭浮沉试验方法 查看
GB/T 479-2000 烟煤胶质层指数测定方法 查看
GB/T 480-2000 煤的铝甑低温干馏试验方法 查看
GB/T 483-1998 煤炭分析试验方法一般规定 查看
GB/T 5447-1997 烟煤粘结指数测定方法 查看
GB/T 5448-1997 烟煤坩埚膨胀序数的测定 电加热法 查看
GB/T 5449-1997 烟煤罗加指数测定方法 查看
GB/T 5450-1997 烟煤奥阿膨胀计试验 查看
GB/T 6949-1998 煤的视相对密度测定方法 查看
GB/T 7560-2001 煤中矿物质的测定方法 查看
JB/T 7610-1994 锅炉煤粉燃烧特性试验规范 查看
JB/T 7611-1994 锅炉煤粉气流着火指数测定试验规范
JB/T 7612-1994 锅炉煤粉粒度分布测试规范 查看
MT 190-1988 选煤厂煤泥水沉降试验方法 查看
MT 263-1991 烟煤宏观类型的划分与描述 查看
MT 265-1991 商品煤随机反射率分布图的判别方法 查看
MT 422-1996 煤矿粉尘粒度分布测定方法(质量法) 查看
MT 56-1981 中国煤炭可选性测定标准 查看
MT 80-1984 煤中灰分快速测定方法 查看
MT/T 1-1996 商品煤含矸率和限下率的测定方法 查看
MT/T 109-1996 煤和矸石泥化试验方法 查看
MT/T 340.1-1994 冶金焦用北淮矿务局煤技术条件 查看
MT/T 340.2-1994 发电煤粉锅炉用淮北矿务局煤技术条件 查看
MT/T 340.3-1994 水泥回转窑用淮北矿务局煤技术条件 查看
MT/T 341.1-1994 冶金焦用大屯煤电公司煤技术条件 查看
MT/T 341.2-1994 发电煤粉锅炉用大屯煤电公司煤技术条件 查看
MT/T 341.3-1994 蒸汽机车用大屯煤电公司煤技术条件 查看
MT/T 342.1-1994 冶金焦用七台河矿务局煤技术条件 查看
MT/T 342.2-1994 常压固定床煤气发生炉用七台河矿务局煤技术条件 查看
MT/T 342.3-1994 蒸汽机车用七台河矿务局煤技术条件 查看
MT/T 342.4-1994 水泥回转窑用七台河矿务局煤技术条件 查看
MT/T 342.5-1994 发电煤粉锅炉用七台河矿务局煤技术条件 查看
MT/T 343.1-1994 冶金焦用西山矿务局煤技术条件 查看
MT/T 343.2-1994 发电煤粉锅炉用西山矿务局煤技术条件 查看
MT/T 344.1-1994 发电煤粉锅炉用龙口矿务局煤技术条件 查看
MT/T 344.2-1994 常压固定床煤气发生炉用龙口矿务局煤技术条件 查看
MT/T 345.1-1994 发电煤粉锅炉用霍州矿务局煤技术条件
MT/T 345.2-1994 冶金焦用霍州矿务局煤技术条件 查看
MT/T 346.1-1994 发电煤粉锅炉用大雁矿务局煤技术条件 查看
MT/T 347.1-1994 发电煤粉锅炉用扎赉诺尔矿务局煤技术条件 查看
MT/T 348.1-1994 冶金焦用萍乡矿务局煤技术条件 查看
MT/T 348.2-1994 发电煤粉锅炉用萍乡矿务局煤技术条件 查看
MT/T 348.3-1994 合成氨用萍乡矿务局煤技术条件 查看
MT/T 348.4-1994 水泥回转窑用萍乡矿务局煤技术条件 查看
MT/T 349.1-1994 冶金焦用潞安矿务局煤技术条件 查看
MT/T 349.2-1994 发电煤粉锅炉用潞安矿务局煤技术条件 查看
MT/T 349.3-1994 蒸汽机车用潞安矿务局煤技术条件 查看
MT/T 357-1994 煤的三氯甲烷萃取物测定方法 查看
MT/T 358-1994 煤的三氯甲烷萃取物族组分测定方法 查看
MT/T 384-1994 煤中铀的测定方法 查看
MT/T 385-1994 煤中钒的测定方法 查看
MT/T 560-1996 煤的热稳定性分级 查看
MT/T 561-1996 煤的固定碳分级 查看
MT/T 562-1996 煤中磷分分级 查看
MT/T 574-1996 煤矸石生物肥料技术条件 查看
MT/T 594-1996 煤显微组分荧光光谱测定方法 查看
MT/T 595-1996 煤显微组分荧光强度测定方法 查看
MT/T 596-1996 烟煤粘结指数分级 查看
MT/T 597-1996 煤中氯含量分级 查看
MT/T 736-1997 无烟煤电阻率测定方法 查看
MT/T 737-1997 量热仪氧弹安全性能检验规范 查看
MT/T 739-1997 煤炭堆密度小容器测定方法
MT/T 740-1997 煤炭堆密度大容器测定方法 查看
MT/T 741-1997 煤系高岭岩 三氧化二铝浸出率测定方法 查看
MT/T 748-1997 工业型煤冷压强度测定方法 查看
MT/T 749-1997 工业型煤浸水强度和浸水复干强度的测定方法 查看
MT/T 750-1997 工业型煤中的全硫测定方法 查看
MT/T 751-1997 工业型煤发热量测定方法 查看
MT/T 791-1998 水煤浆采样方法 查看
MT/T 792-1998 水煤浆浓度测定方法 查看
MT/T 799-1999 煤系高岭岩(土)及其煅烧土沉降体积测定方法 查看
MT/T 800-1999 煤系高岭岩(土)煅烧土白度测定方法 查看
MT/T 801-1999 煤系高岭岩(土)及其煅烧土悬浮性能测定方法 查看
MT/T 802.1-1999 煤系硫铁矿及硫精矿中有效硫的测定方法 查看
MT/T 802.2-1999 煤系硫铁矿及硫精矿中全硫、硫酸盐硫、硫化铁硫的测定方法 查看
MT/T 802.3-1999 煤系硫铁矿及硫精矿中总碳量的测定方法 查看
MT/T 802.4-1999 煤系硫铁矿及硫精矿中砷含量的测定方法 查看
MT/T 846-1999 煤体导水性分类 查看
SD 210-1987 火电厂动力煤标准煤样(第一批) 查看
(http://www.instrument.com.cn/bbs/shtml/20040801/68915/)

F. 钢材检验标准

  1. 验收目的

    为保证我公司采购的钢材质量符合技术要求和相关标准, 生产出合格 的产品,要求对供方提供的钢材及质量证明的执行进行必要的质量控制。

2. 适用范围

本规范适用于我公司采购的以及集团公司提供的各类钢材。 这里的钢材指通过塑性变形(冷热轧、冷拉拔)获得的,具有一定外形 的型钢、钢板、钢管、钢丝等的钢铁材料产品。

3. 相关文件与标准

GB/T4336-1984

4. 验收条件与地点

4.1 交货状态

订货合同或技术协议中有规定的,按照规定的状态验收。没有规定的,按照相关标准规定的通用 交货状态验收。

碳素钢和中低合金钢的光电发射光谱分析方法

4.2供方按批次出具钢材质量证明书(或合格证) 。

质量证明书中的各项检

a. 制造厂(供方)名、生产批号(或炉号)及合同号。

验结果应符合标准,质量证明书应至少包含下列内容:

b. 材料牌号和级别。

c. 材料品种、型号、规格及交货状态。

d. 交货数量及重量。

e. 全部检验项目的检验报告。

f. 对于图纸或订货技术要求中有特殊要求的, 质量证明书中还必须 包含特殊项目的检验报告。

g. 质量证明书必须有供方质检部门的检验专用印章、检验员签章, 并加盖“合格”章交付。 质量证明书应签名齐全、填写规范完整,需要提供中英文对照的证 明书的,必须按照我公司的标准执行。

4.3 验收项目

a. 核对质量证明书的符合性。

b. 钢材的涂色标记。

G. 山西老陈醋的勾兑事件

山西醋产业协会副会长王建忠在接受采访时爆出:市面上的山西老陈醋95%都是勾兑醋。醋精本身不含营养成分,勾兑比例掌握不好的话,还会对人体造成伤害。但尚无手段检测出勾兑的是不是工业级冰醋酸,以及勾兑比例是否合乎标准。
冰醋酸分为食品级的冰醋酸和工业级的冰醋酸。工业冰醋酸属于非食品原料,如果企业加入,就是属于非法添加行为,是要受到法律制裁的。主要是检测醋里是否含有游离矿酸,醋里是不能含有这种物质的,都会检测游离矿酸的项目,以防止工业冰醋酸混入。可以通过核磁共振的方法,检测碳14的含量来鉴定。
它标明老陈醋,它打着山西老陈醋的牌子,但是可以看看详细细则,里面成分一般都有苯甲酸钠,只要有苯甲酸钠,都可以断定它不是老陈醋。 2011年8月6日,(山西)省食品质量监督检验中心发布权威信息:山西所产老陈醋产品安全可靠,不存在多添加防腐剂,超范围、超限量滥用防腐剂现象,广大人民群众可以放心食用。
山西老陈醋是我国名牌产品和地理标志保护产品,以高粱麸皮为主要原料,以稻壳和谷壳为辅料,以大麦、豌豆为原料制作的大曲作为糖化发酵剂,经酒精发酵后采用固态醋酸发酵,再经熏醅、陈酿等工艺酿造而成,以其酸、香、甜、绵、鲜的特有品质名列我国四大名醋之首。全省共有食醋生产企业125家,全年产量60万吨。
山西老陈醋严格按照工艺规范生产,产品优质稳定,越来越受到消费者青睐,仅东湖醋园每日接待的国内外参观团队就超过70批次。企业要发展壮大,需要一个公平、公正的竞争环境。
随着山西老陈醋消费群体日益扩大,市场不断扩张,国内市场上不时出现假冒山西老陈醋的现象。省委、省政府对此高度重视,省质监局将食醋质量安全列为工作重点,不断加大监管力度。共注销57家食醋企业的生产许可证,先后对6家现场核查不合格的生产企业作出不予许可的决定。省食品质量监督检验中心发布的最新检验数据显示:全省11市125家食醋生产企业636个批次产品,合格598个批次,不合格38个批次,合格率为94%,防腐剂苯甲酸、山梨酸检出率仅为0.3%。
省质监局负责人表示,经省质监部门多年跟踪检查,省内获证企业冠以“山西老陈醋”标识的均为酿造生产,并不全是山西企业生产的。下一步,全省质监部门要强化对省内获证企业的监管,加大对违法生产和黑窝点的打击力度,以确保食品质量安全;同时,积极协调其他省区市监管部门,联合打击假冒山西老陈醋产品违法行为,保护山西老陈醋的合法权益和品牌形象,为广大人民群众创造安全的消费环境。

H. 想知道什么是“工业煤”

工业的粮食-煤
来源:学生网络图书 类别:阅读 发布时间:05-17

--------------------------------------------------------------------------------

人类发现煤的历史相当长, 我国是世界上最早用煤作燃料的国家.远在 3000 多年前, 我们的祖先就已开始采煤, 并用这种”黑石”来取暖、烧水煮饭了.在汉唐时代, 就已经建立了手工煤炭业, 煤在冶铸金属(利用热能)方面得到了广泛的应用.可这时, 世界上的大多数国家还不知道煤是什么东西呢! 煤在古代除了叫黑石之外, 还有其他许多名称.如石涅啦, 黑金啦, 石墨啦, 石炭啦, 等等都是.

那么, 煤又是怎样形成的呢?

人类发现和使用煤炭, 虽然已有3000 多年的历史了, 但煤是怎样生成的, 却是近几百年来才逐步弄清的.

煤是由植物变来的, 这已是我们谁也不会怀疑的事实.但煤里面的热能是从哪里来的呢? 这就需要从植物说起了.

原来, 绿色植物中的叶绿素, 能够从空气中吸收二氧化碳, 同时吸收太阳光;依靠太阳光的能量, 把根部送来的水分解, 放出氧气, 而把氢气同二氧化碳发生一系列的复杂的化学反应, 变成为植物生存所必需的物质——各种各样的糖类.这个奇妙的过程就是我们通常所说的”光合作用”, 正因为有了光合作用, 植物才会越长越高.那么, 绿油油的树枝、粗大的树干, 是怎么变成黑色的像石头一样的煤呢?

早在远古时代, 地球上还没有人类.气候比现在也要温暖湿润得多, 因而地面上到处生长着茂密高大的造煤植物.特别是在海边和内陆湖沼地带, 由于这里终年积水, 营养丰富, 植物尤其茂盛.一开始, 这些地方生长着的植物并不高大, 但随着植物不断地生长和死亡, 这些植物的遗体越堆越多, 使得水越来越浅, 养料也越来越丰富.最后, 这些地方发育了高大茂密的森林.

森林一批批生长, 又一批批地死亡.经过许多次的不断反复之后, 植物遗体在这些地方越堆越多.在细菌的作用下, 植物的遗体最终变成一种黑褐色或褐色的淤泥状物质——泥炭.由植物遗体变成泥炭, 我们把这一变化过程叫”泥炭化阶段”, 它是煤即将形成的前奏.

如果地球的表面和地壳真是永远不变的话, 即使有了很多的植物遗体, 煤仍是无法形成的.但我们知道, 地球的表面从来没有安静过, 常常发生频繁的地壳运动.

如果地壳上升了, 低洼的地方变成平地甚至高山, 由于水分减少, 植物将生长得少而慢, 一般是无法形成煤的.

如果地壳下降了, 而且下降得很快的话, 特别是当地壳下降的速度超过植物遗体堆积的速度时, 植物由于水太深而无法继续生长下去, 那么, 煤同样也是难以形成的.

只有当地壳缓慢地下降时, 植物才能不断地生长和死亡, 泥炭层也才能不断地形成和加厚.而且有可能形成很厚的煤层.

如果这里的地壳反复地上升和下降, 则有可能形成许多煤层.在浅海和内陆湖沼, 由于地壳下降, 泥炭层会被陆地上的河流带来的泥沙掩埋, 而且随着地壳的不断下降, 覆盖在泥炭层上的泥沙会越来越厚, 泥炭层会被掩埋得越来越深.这些被掩埋的植物遗体, 经过长期的高温高压和细菌的作用, 形成了褐煤.由泥炭变成褐煤的作用, 我们把它叫做”岩化作用”.

褐煤在高温高压下, 将继续失去水分和挥发水分, 碳会进一步增加, 慢慢地变成了烟煤: 烟煤进一步变化, 最后变成了无烟煤.

由褐煤、烟煤到无烟煤的过程, 最主要的变化就是煤里面碳的含量在不断地增多, 所以这种作用又叫做”碳化作用”或者”变质作用”.所以说, 只有大量的植物是不够的;适当的、有节奏的地壳运动也是造煤的一个必要前提, 二者缺一不可.说到这里, 你对为什么把煤叫做”太阳石”这个问题应该弄清楚了吧! 在地球形成和演化的整个地质历史上, 曾多次出现过有利于成煤的地质条件.例如我国在石炭纪、二叠纪(距今2.5~3.3 亿年)和侏罗纪(距今 1.4~1.95 亿年)等时期, 对煤的形成就很有利, 我国的煤大都是这些时期形成的.把煤作为燃料烧掉, 多少年来我们都认为这是天经地义的事情.近几十年来, 随着社会的发展和科技的进步, 人们才发现煤浑身都是宝.不仅是一种重要的能源, 而且是一种十分重要的有机化工原料.那么, 煤究竟有哪些用处呢? 从前面的叙述中我们已经知道, ”煤氏三兄弟”中变质程度最深的是无烟煤, 它的发热量也最高.烧起来火力很强, 烟尘很少, 燃烧后灰渣也不多, 是一种很好的燃料;烟煤虽说变质程度比无烟煤差, 发热量中等, 但它却是三兄弟中最有出息的一个, 因为它不仅可以用来炼焦冶炼钢铁, 而且还可以被气化、液化用于生产和生活的许多方面;褐煤变质程度最差, 发热量也最低, 但它却是很好的化工原料! 那么, 把煤作为化工原料又能干什么呢? 要想知道这些, 我们就首先必须知道煤焦油的来历.我们把煤放到炼焦炉里, 隔绝空气, 加热到1000℃左右时, 就可得到焦炭、煤焦油和焦炉气这些产品.1 吨优质炼焦煤, 经焦化, 可得到700~800kg 焦炭, 30~40kg 的煤焦油和100 多kg 的焦炉气.其中, 焦炭是冶金工业的 ”粮食”, 而且还可以用来生产煤气、电极、合成氨、电石等.电石除用于照明、切割和焊接金属外, 还是生产塑料、合成纤维、合成橡胶等重要化工产品的原料.至于焦炉气么, 首先它是很好的气体燃料, 使用煤气这在许多城市里已是很普遍的了.其次它也是重要的化工原料.说来说去, 最有用处的还是要数煤焦油了.它的用途真是丰富多采, 极为广泛.说来话长, 100 多年前, 由于人们对它知之甚少, 当时是把它当做废物倒掉的.光阴似箭, 日月如梭, 到了19 世纪中叶, 随着化学工业的发展, 人们才发现煤焦油原来成分极为复杂, 多达500 种以上.用它可以制造出千百种用途各异、色彩缤纷的化工产品.于是, 煤焦油一下子成了有机化学工业珍贵的”原料仓库”.比如染料、香料、合成橡胶、塑料、合成纤维、农药、化肥、炸药、洗涤剂、除草剂、溶剂、沥青、油漆、糖精、卫生球等等.制造这些产品的原料都可以从煤焦油中获得.

除煤焦油、煤气、焦炭外, 就是一向被我们看作是废物的许多东西, 今天也都是”宝贝”了.如燃烧煤过程中产生的硫氧化物, 现在用它可以生产出优质硫酸;煤灰和煤渣, 现在可以用来制造水泥等建筑材料.在煤灰里甚至还可以提取出大量的被誉为”电子工具的粮食”的半导体材料——锗和镓.

噢! 从煤里竟能得到这么多宝贵的东西, 怪不得它被人们称誉为”万能的原料, 黑色的金子”呢!

可以说, 从18 世纪末到20 世纪初的100 年时间里, 以煤为主要能源的世界, 发生了科学技术、经济和社会的巨变, 今天这个高度现代化的世界经济, 就是在以煤为主要能源的基础上建立起来的.

新中国成立40 年来, 我国的煤炭工业发展十分迅速.1990 年我国原煤产量达10.8 亿吨, 比1949 年增长了32 倍, 是世界上产煤最多的国家.我国的煤炭资源分布十分广泛而又不均匀.

主要分布在山西、内蒙古、陕西、河南、山东、河北一带, 以及安徽、江苏两省北部、新疆、贵州、云南、黑龙江等省、区也不少.其中, 尤以山西、内蒙古、新疆、陕西最为集中, 北方仅山西、内蒙古两省区的煤炭储量就占全国煤炭总储量的60%以上.

由于我国的煤炭资源主要分布在北方, 因而我国的煤炭基地也主要在北方.全国年产量超过1000 万吨的12 个大煤矿, 有10 个在北方.

目前, 我国最大的煤矿是山西的大同, 年产量达3500 万吨以上, 被誉为 ”煤都”.在大同的西南, 有我国也是世界最大的露天煤矿——山西平朔的安太堡露天煤矿, 年产量达1533 万吨.它是我国现代化水平最高的煤矿, 从剥离到采煤, 从运输到选煤, 全部是现代化设备.在这里, 你可以看到世界上最大的斗容25m3 的特大电铲, 不停地把土和岩石剥掉, 把煤挖出来.然后, 通过我国第一条现代化铁路——大秦铁路线, 将煤运到我国最大的煤炭转运港——秦皇岛港.由此再转运到我国的东北、华东和华南等地区, 支持着那里的社会主义建设.

总之, 我国不仅煤炭资源极为丰富, 而且质地优良, 品种齐全.通过广大煤矿工人的辛勤劳动, 为我国的经济发展提供了充足的”粮食”.然而, 随着工业的发展, 煤炭的消耗越来越大.因烧煤产生的大量烟灰、飘尘和有害气体, 污染了环境, 人们逐渐转向比它更优越的新能源: 石油.

I. 锻件锻造原材料的要求如何检验的

锻件在锻造加工之前,需经过一道程序,得先检验其原材料的质量,确保原材料无质量问题后再进行下一步工序,现在我们就来看看它具体有哪些要求吧。
一、对锻造原材料的一般性要求。
1.化学成分符合规定。
2.熔炼、铸造、轧制、锻造和清理等生产工艺过程符合规定。
3.表面质量符合要求,没有划伤、鳞片、折叠、裂纹等缺陷(或缺陷程度在允许范围内),对缺陷应予以清除,有时需要将表面全部剥皮。
4.组织状态符合要求,没有不均匀组织、过热组织,没有夹渣、疏松、气孔、白点等内部缺陷。
二、对锻造原材料的检验
锻造原材料在出厂前,生产厂一般都应进行检验,以合格品供货,但是作为使用方的锻造厂也应该进行必要的检验。检验锻件可以采用普查或者抽查的方式进行。检验的项目可以根据原材料的种类和锻造的使用要求确定。
1.抽样检查化学成分。用火花鉴别、磁感应法和光谱分析等方法检查材料是否混装。
2.外观检查,确定表面有无缺陷及缺陷的程度、有无脱碳现象。
3.检验材料是否符合尺寸与形状公差的要求。
4.通过断裂试验检查材料内部缩孔和白点;山西中信重工,通过热断裂试验检查材料的热脆性。
5.宏观和微观的夹杂物检验;通过硫印试验检查钢中硫的偏析,并确定其偏析区。
6.用显微镜检查晶粒度;检查金相组织。
7.无损检查:超声波探伤、磁力探伤或涡流检查。
8.通过镦粗试验检查材料的镦粗性能;通过拉伸试验、硬度试验、冲击试验等检验力学性能。
9.淬透性试验:当用一个新炉号的原材料时,先制造一小批锻件,并进行热处理,然后进行检查,确定出该炉号材料的热处理制度。
经上述所述,只有确保原材料的质量没有问题才能安全地进行接下来的锻造加工生产,所有原材料的选择很重要。

J. 任务铜精矿中铜的测定

——碘量法

任务描述

铜矿石中的铜,其含量变化幅度较大,涉及的测定方法也较广泛。目前对高、中含量的铜的测定多采用碘量法。碘量法已被列为铜精矿测定铜的国家标准方法(GB/T3884.1-2012 )。铜精矿分析一般要求测定铜、金、银、硫、氧化镁、氟、铅、锌、镉、镍、砷、铋、锑、汞等项目。本任务旨在通过实际操作训练,学会碘量法测定铜精矿中铜含量,熟练运用酸分解法对试样进行分解;能真实、规范记录原始记录并按有效数字修约进行结果计算。

任务实施

一、仪器和试剂准备

(1)玻璃仪器:酸式滴定管、锥形瓶、容量瓶、烧杯。

(2)铜片(≥99.99%):将铜片放入微沸的冰乙酸(ρ=1.05g/mL)中,微沸1min,取出用水和无水乙醇分别冲洗两次以上,在100℃烘箱中烘4min,冷却,置于磨口瓶中备用。

(3)溴水(AR)。

(4)氟化氢铵(AR)。

(5)盐酸(ρ=1.19g/mL)。

(6)硝酸(ρ=1.42g/mL)。

(7)硫酸(ρ=1.84g/mL)。

(8)高氯酸(ρ=1.67g/mL)。

(9)冰乙酸(1+3)(ρ=1.05g/mL)。

(10)硝酸(1+1)。

(11)氟化氢铵饱和溶液(贮存在乙烯瓶中)。

(12)乙酸铵溶液(300g/L):称取90g乙酸铵,置于400mL烧杯中,加入150mL蒸馏水和100mL冰乙酸,溶解后用水稀释至300mL,混匀,此溶液pH值为5。

(13)硫氰酸钾(100g/L):称取 10g 硫氰酸钾溶于 400mL 烧杯中,加 100mL 水溶解。

(14)淀粉溶液称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的蒸馏水稀释至100mL,加热煮沸,冷却备用。

(15)三氯化铁(100g/L)。

(16)碘化钾(AR)

(17)硫代硫酸钠(约0.04mol/L):

——制备:称取100g 硫代硫酸钠(Na2S2O3·5H2O)置于1000mL 烧杯中,加入500mL无水碳酸钠(4g/L)溶液,移入10L棕色试剂瓶中,用煮沸并冷却的蒸馏水稀释至约10L,加入10mL三氯甲烷,静置两周,使用时过滤,补加1mL三氯甲烷,摇匀,静置2h。

——标定:称取0.080 g(精确至0.0001 g )处理过的纯铜三份,分别置于500mL锥形瓶中,加10mL硝酸(1+1),于电热板上低温加热至溶解,取下,用水吹洗杯壁。加入5mL硫酸(1+1),继续加热蒸至近干,取下稍冷,用约40mL蒸馏水冲洗杯壁,加热煮沸,使盐类完全溶解,取下,冷至室温。加1mL冰醋酸(1 +3),加3mL氟化氢铵饱和溶液,加入2~3g碘化钾摇动溶解,立即用硫代硫酸钠标准溶液滴定至浅黄色,加入2mL淀粉溶液继续滴定至浅蓝色,加5mL硫氰酸钾溶液,激烈摇振至蓝色加深,再滴定至蓝色刚好消失为终点。随同标定做空白试验。

按下式计算硫代硫酸钠标准滴定溶液的滴定度:

岩石矿物分析

式中:T为硫代硫酸钠标准溶液对铜的滴定度,g/mL;m为称取纯铜的质量,g;V为滴定纯铜所消耗的硫代硫酸钠标准溶液的体积,mL;V0为滴定空白所消耗的硫代硫酸钠标准溶液的体积,mL。

二、分析步骤

精确称取0.2000 g铜精矿置于300mL锥形瓶中,用少量水润湿,加入10mL浓盐酸置于电热板上低温加热3~5min取下稍冷,加入5mL硝酸和0.5~1mL溴,盖上表皿,混匀,低温加热(若试料中含硅、碳较高时加5~10mL高氯酸)待试样完全分解,取下稍冷,用少量蒸馏水冲洗表皿,继续加热蒸至近干,冷却。

用30mL蒸馏水冲洗表皿及杯壁,盖上表皿,置于电热板上煮沸,使可溶性盐类完全溶解,取下冷却至室温滴加乙酸铵溶液至红色不再加深为止,并过量3~5mL,然后滴加氟化氢铵饱和溶液至红色消失并且过量1mL混匀。加入2~3 g碘化钾摇动溶解,立即用硫代硫酸钠标准溶液滴定至浅黄色,加入2mL淀粉溶液继续滴定至浅蓝色,加5mL硫氰酸钾溶液,激烈摇振至蓝色加深,再滴定至蓝色刚好消失为终点。随同试样做空白试验。

若铁含量极少时,需补加1mL三氯化铁溶液;如果铅铋含量较高,需提前加入2mL淀粉溶液。

三、结果计算

按下式计算铜质量的百分含量:

岩石矿物分析

式中:w(Cu)为铜的质量分数,%;T为硫代硫酸钠标准滴定溶液对铜的滴定度,g/mL;V为滴定试样溶液消耗硫代硫酸钠标准滴定溶液的体积,mL;V0为滴定空白试样溶液所消耗硫代硫酸钠标准滴定溶液的体积,mL;m为称取试样的质量,g。

四、质量表格填写

任务完成后,填写附录一质量表格3、4、5。

任务分析

一、碘量法测定铜的原理

碘量法测定铜的依据是在弱酸性溶液中(pH=3~4 ),Cu2+与过量的KI作用,生成CuI沉淀和I2,析出的I2可以淀粉为指示剂,用Na2S2O3标准溶液滴定。有关反应如下:

岩石矿物分析

Cu2+与I-之间的反应是可逆的,任何引起Cu2+浓度减小(如形成配合物等)或引起CuI溶解度增大的因素均使反应不完全,加入过量KI,可使Cu2+的还原趋于完全。但是,CuI沉淀强烈吸附

,又会使结果偏低。通常使用的办法是在近终点时加入硫氰酸盐,将CuI(Ksp=1.1×10-12)转化为溶解度更小的CuSCN沉淀(Ksp=4.8×10-15)。在沉淀的转化过程中,吸附的碘被释放出来,从而被Na2S2O3溶液滴定,使分析结果的准确度得到提高。即:

CuI+SCN-→CuSCN+I-

硫氰酸盐应在接近终点时加入,否则SCN-会还原大量存在的Cu2+,致使测定结果偏低。溶液的pH值一般应控制在3.0~4.0之间。酸度过低,Cu2+易水解,使反应不完全,结果偏低,而且反应速率慢,终点拖长;酸度过高,则I-被空气中的氧氧化为I2(Cu2+催化此反应),使结果偏高。

Fe3+能氧化I-,对测定有干扰,但可加入NH4HF2掩蔽。NH4HF2是一种很好的缓冲溶液,因HF的Kα=6.6×10-4,故能使溶液的pH值保持在3.0~4.0之间。

二、Na2S2O3标准溶液的配制

由于Na2S2O3不是基准物,因此不能直接配制标准溶液。配制好的Na2S2O2溶液不稳定,容易分解,这是因为在水中的微生物、CO2、空气中的O2作用下,发生下列反应:

岩石矿物分析

岩石矿物分析

岩石矿物分析

此外,水中微量的Cu2+或Fe3+也能促进Na2S2O3溶液的分解。

因此,配制Na2S2O3溶液时,需要用新煮沸(为了除去CO2和杀死细菌)并冷却了的蒸馏水,加入少量Na2CO3使溶液呈弱碱性,以抑制细菌的生长。这样配制的溶液也不易长期保存,使用一段时间后要重新标定。如果发现溶液变浑浊或析出硫,也应该过滤后再标定或者另配溶液。

三、干扰元素及其消除办法

(1)三价铁离子:Fe3+的存在有显着干扰,因为它能氧化I-,析出碘,使结果偏高。为使碘量法测定铜在有铁存在下也能够进行,常把铁转变为不与碘化钾作用的配合物,一般是加入氟化钾(铵),此时,Fe3+结合成为不与碘化钾起反应的配离子

这是快速碘氟法的基础。

(2)亚砷酸、亚锑酸:在碘量法测定铜的条件下(pH>3.5),

等离子能被析出的I2氧化,使结果偏低,甚至不放出I2,因而干扰测定。其反应如下:

岩石矿物分析

五价的砷、锑在pH>3.5的条件下对测定无干扰。因此可在分解试样时将三价砷和锑氧化为高价以消除其干扰。As(Ⅲ)和Sb加入溴水氧化。煮沸除去过量的溴。

(3)亚硝酸根有影响,可于溶液中加入尿素除去。

(4)碘化亚铜沉淀吸附碘,使测定结果偏低。加入硫氰酸铵和碘化亚铜作用,因硫氰化亚铜的溶解度比碘化亚铜的溶解度小,生成硫氰化亚铜,消除对碘的吸附。当铜含量很低时可不加硫氰酸铵。当铜的含量较高时,在滴定终点到达之前可加入适量的硫氰酸铵溶液,使碘化亚铜转变为硫氰化亚铜:

CuI+SCN-→CuSCN+I-

滴定时,体积不能太大,否则碘化亚铜又形成二价铜盐,使溶液变蓝,终点不明显。

实验指南与安全提示

/试样中碳含量较高时,需加2mL硫酸和2~5mL高氯酸,加热溶解至无黑色残渣,并蒸干。

试样中含硅、碳较高时,加0.5 g氟化氢铵和5~10mL高氯酸。

试样中含砷锑高时,需加入溴水,再加入硫酸冒烟处理。

碘化钾的用量:由于I-与Cu2+的反应是一个可逆反应:

岩石矿物分析

故为使Cu2+与I-定量地反应,I-(通常以KI形式加入)过量是十分必要的。实际分析中,一般加入2g左右的KI即可使Cu2+与I-定量地反应。另外,由于过量I-的存在,反应生成的碘能形成I3-,可减少因碘的易挥发性所带来的误差。

硫氰酸盐的作用:在测定铜的溶液中加入硫氰酸盐,使碘化亚铜变为溶解度更小的硫氰酸亚铜,反应如下:

CuI+SCN-→CuSCN+I-

①可克服碘化亚铜对碘的吸附(铜含量高时,这种吸附是相当显着的),使终点清晰;

②可使I-与Cu2+的反应进行得更完全;

③并可增加碘离子浓度,减少碘化钾(价格昂贵)的加入量。

硫氰酸盐的加入时间:当铜的含量较高时,可以接近终点时加入适量的硫氰酸钾应溶液。过早加入会使结果偏低,因为铜可被CNS-还原。反应如下:

岩石矿物分析

滴定时溶液的酸度:碘量法滴定铜可以在醋酸、硫酸或盐酸介质中进行,目前采用最多的还是在醋酸介质中进行,主要原因是在醋酸介质中比在硫酸或盐酸介质中较易控制测定所需的酸度。碘量法测定铜时,pH必须维持在3.5~4之间。

①在碱性溶液中

将发生下列反应:

5H2O,而且I2在碱性溶液中会发生歧化反应生成

也可能有水解副反应。

②在强酸性溶液中Na2S2O3溶液会发生分解:

酸度太大,碘化物易被空氧化而析出碘:4I-+4H+O2→2I2+2H2O

③铜矿石中常含有Fe、As、Sb等金属,样品溶解后,溶液中的Fe3+、As(Ⅴ)、Sb(Ⅴ)等均能氧化I-为I2,干扰Cu2+的测定。As(Ⅴ)、Sb(Ⅴ)的氧化能力随酸度下降而下降,当pH>3.5时,其不能氧化I-。Fe3+的干扰可用F-掩蔽。

滴定时溶液的体积:体积不能太大。化学反应的速度与反应物的浓度有关。增大溶液体积,就相当于降低Cu2+与I-的浓度,使反应速度变慢,碘化亚铜又形成二价铜盐,出现终点返回的现象,终点不明显。

若亚硝酸根未除尽,可加少许尿素,煮沸数分钟。

空白溶液和铁含量很低的试样,为了便于调节pH,可加入数滴100g/L NH4Fe(SO42溶液。

案例分析

1.鸿盛矿业公司化验室某员工在用碘量法测定一含铜矿石中的铜含量时,用盐酸、硝酸溶解样品后,加入NH4F消除Fe3+的干扰,但其测定结果经过比较后发现偏高,请以你所学知识分析结果可能偏高的原因。

2.赣州钴钨公司购进了一批含铁铜矿石,对方出具的检验报告表明该批次铜含量为11.26%,实验室某员工在使用碘量法测定铜含量时,将样品溶解后,用NaAc溶液调节溶液的pH值3.5~5.0左右,加入KI还原Cu2+,滴定完毕,计算结果后发现结果比对方检验更高。技术主管在查找原因时发现该员工忘记加入NH4F,请分析此次测定失败的原因。

阅读材料

铜精矿知识简介

1.概述

自然界中含铜矿物有200多种,其中具有经济价值的只有十几种,最常见的铜矿是硫化铜矿,例如:黄铜矿(CuFeS2)、辉铜矿(Cu2S)、铜蓝(CuS)等,目前世界上80% 的铜来自此类矿石。铜精矿是将矿石粉碎球磨后,用药剂浮选分离捕集含铜矿物,使品位大大提高,供冶炼铜用。少数铜矿中(如湖北大冶铜绿山矿),常常夹杂有孔雀石,这是一种含铜的碳酸盐矿物,色泽优美,经琢磨雕刻,可做成佩饰或项链等装饰品,属稀有宝石类,深受人们喜爱。

我国开采冶炼铜矿的历史悠久,可追溯到春秋时代,距今有2700多年。大冶有色金属公司铜绿山矿在生产过程中发现的古铜矿遗址,经考古发掘,已清理出从西周至西汉千余年间不同结构、不同支护方式的竖井、斜井、盲井数百座,平巷百余条,以及一批春秋早期的炼铜鼓风竖炉,随同出土还有大量的用于采矿、选矿和冶炼的生产工具,在遗址旁近2km2的地表堆积着约40 万吨以上的古代炼渣,渣样分析,其铜含量小于0.7%,它表明了我国古代采冶的规模和高超的技术水平。

我国现代化的大型炼铜采冶企业有:江西铜业有限公司、大冶有色金属公司(湖北)、铜陵有色金属公司(江苏)、白银有色金属公司(甘肃)、中条山有色金属公司(山西)以及云南冶炼厂、沈阳冶炼厂、葫芦岛锌厂等。由于自采铜矿的品位和数量有限,不能满足生产的需要,因而对进口铜精矿的需求日益增大,与我国有过贸易往来的铜精矿生产国有:巴布亚新几内亚、菲律宾、印尼、澳大利亚、蒙古、摩洛哥、莫桑比克、南非、波兰、秘鲁、智利、墨西哥、美国、加拿大等。

2.特性

进口硫化铜精矿一般为墨绿色到黄绿色,也有灰黑色,其中时有夹杂少许蓝色粉末。铜精矿是浮选产物,粒度较细,接近干燥的铜精矿在储运过程中易扬尘散失,也不适宜远洋运输,因此生产过程中常保持10% 左右的水分。气温高时,硫化铜精矿易氧化,特别是远洋运输时间长,或在夏季交接货物时,氧化现象更为严重。验收这种铜精矿时,往往铜品位降低,收货重量增加。正是由于这种原因,铜精矿在贸易的交接过程中,是以总金属量来衡量的。用于品质分析的样品,应密封于铝箔袋中存放。实验证明,封存于纸袋或聚乙烯袋中的样品,放置干燥器中保存一个月,铜的百分含量明显降低,随着保存时间的延长,铜品位还会继续下降,而封存在铝箔袋中的样品,即使存放半年,铜含量也无明显变化。

从冶炼的角度来说,铜精矿中硫和铁的含量高些好,一般要求铜/硫比为1∶1 左右,Fe>20%,Si<10%,这种矿在反射炉中造渣性能和流动性能都较好。对杂质元素Cr、Hg、Pb、Zn、Bi、As、F、Cl等含量要求愈低愈好,主要是为了满足冶炼的要求和对环境的保护。

3.用途

铜精矿供炼铜用。从矿石冶炼得到的“羊角铜”即粗铜,经电解可得到纯度很高的电解铜。在冶炼和电解过程中,还可以从阳极泥、电解液、烟道灰和尾气中分别回收金、银、钯、铂、镉、铅、锌、铋、硒、碲、硫等元素或化合物,余热可发电。综合利用不仅可减少废液、废渣、废气对环境和空气的污染,同时变废为宝,提高了铜精矿的利用价值。

4.化学成分

硫化铜精矿的主要成分是铜、铁、硫,主要的贵金属有金、银,其他成分有硅、钙、镁、铅、锌、铝、锰、铋、锑、氟、氯等,因原矿产地和选矿水平不同,品质差异较大。

5.进口规格

进口铜精矿以成交批中铜、金、银的纯金属量作为结算依据,一般铜含量为25%~45%,金含量为1~35g/t,银含量在30~350g/t范围内,当金含量小于1g/t,银含量小于30 g/t时,金、银二项不计价。经多年进口铜精矿实践,从价格和回收率来考虑,企业喜欢进口含铜量在30% 左右,金银含量在不计价范围之铜精矿。对冶炼和环境有害的元素F、Cl、Pb+Zn、As、Sb、Hg要求在限量之下,超过限量则按规定罚款,超过最高限量时,该批货拒收。

6.检验标准

铜精矿的检验,一般按500 t作为一个副批,在衡重的同时扦取代表性样品,制备水分测定样品和品质分析样品,按规定进行分析测定,以全部副批检验结果的加权平均值作为最终结果。发货人和收货人品质检验结果在误差范围内,该批货可顺利交接,若双方结果超出0.3%,金的结果超出0.5g/t,银的结果超出10~15g/t,有可能需要仲裁。

我国铜精矿的技术条件标准和检验标准较为完整。YS/T318 -2007 是铜精矿技术条件标准,该标准将铜精矿原有的15个品级修订为五个品级;取制样方法和水分含量测定按GB/T14263-2010进行,根据工作实践,有的铜精矿中金银含量特别高,GB/T3884规定了Cu、Au、Ag、S、As、MgO、F、Pb、Zn、Cd的检验方法。

阅读全文

与山西成分检测方法相关的资料

热点内容
学生提分方法怎么写 浏览:306
国标中检测金葡萄球菌的三种方法 浏览:805
文言文划分停顿的方法有哪些 浏览:343
检测酶活性方法 浏览:228
常用心理测验的应用方法 浏览:520
快速取戒指的方法 浏览:518
紫甘蓝正确服用方法 浏览:751
喉原位癌早期浸润的治疗方法 浏览:299
桂花树苗嫁接方法视频 浏览:956
如何判断出货方法 浏览:627
每个模块那么多方法如何记 浏览:6
巯基乙酸单甘油酯检测方法 浏览:147
尖锐疣治疗的方法 浏览:800
使用什么方法解决 浏览:802
搓澡神器使用方法 浏览:388
闭角青光眼后期治疗方法 浏览:724
清洗瓷砖方法有哪些 浏览:557
汽车漆面划痕有什么补救方法 浏览:761
快速洗纹身方法 浏览:979
女性夜尿多锻炼方法 浏览:446