A. 怎样检测光纤线
方法:
安排两个工作人员,分别在确定故障的光纤的两端,一段的人带上光笔,另外一段无须携带东西;
携带光笔的工作人员,先将光笔与光纤跳线(如图所示)对应的两个头接上。然后打开光电源开关;
如果不出现红光,还可以在夜晚,光线比较暗的时候,顺着光纤寻线,发现线上哪里有红光,就可以找出断点。
B. 光缆成端的监测方法
成端的熔接质量无法监测
对于光纤熔接质量的监测, 目前在工程中主要有3 种监测方法,
一是利用熔接机的显示屏幕进行监测;
二是利用OTDR对接续点进行监测;
三是利用光源,光功率计对熔接损耗进行剪断或是插入测试, 但由于剪断 或是插入都属于破坏性测试, 故在工程中多不采用.
下面就前两种监测方式进行探讨:利用熔接机进行监测:熔接机是采用P S A 影像技术, 通过对图像数据处理提取光纤位置参数, 来透视两根熔接光纤的对芯情况, 对熔接部位的连接情况粗略估算. 那么, 工程应用中, 成端者就可利用该原理来估算成端熔接值. 首先调整熔接机显示屏幕的聚焦旋钮, 使屏幕能清晰地显示出待熔光纤的纤芯与包层的明暗界线. 然后熔接中注意观察两根光纤的纤芯与包层界面, 当熔接时,熔接点没有气泡产生或是两根光纤的纤芯, 包层界面保持直线无扭曲现象, 就可认为熔接损耗是在合格范围之内.否则,则视为不合格,需重新熔接.
利用OTDR对成端熔接监测时,由于进站光缆 D T 成端接续中,无论是T B X法,还是O F D 法,供接续的尾纤最长不过 15 该长度是任何OTDR的盲区
成端熔接异常或是熔接机拒熔
光缆的成端是通过熔接法将尾纤光纤与光缆光纤构筑回路, 与常规的线路光缆熔接法相比, 其需熔接的对象已发生了改变.某些时间里,从熔接机显示屏幕中, 成端者可发现待熔接的两个光纤端面切割都合格, 但熔接机对光纤进行对芯时, 却在屏幕上出现 图像处理故障或灰尘设定故障的提示; 甚至个别时候, 光缆光纤虽能与尾纤光纤相熔接, 但从显示熔接效果的屏幕上, 可看到两根光纤的纤芯在熔接处出现错位, 或有气泡存在, 甚至熔接点凹陷. 以上这些不良的熔接状况的 出现, 常让习惯于线路光缆熔接技术的操作人员, 百思不得其解. 其实导致以上异常现象的原因是由于尾纤光纤与光缆光纤的结构不同所造成. 常用的尾纤的轴向直径一般为28 mm 由外向内分别为黄色的P 外护套, E 芳纶加强纤维,白色的二次涂覆层, 本色的一次涂覆层, 最里 面才是需熔接的裸纤; 而光缆光纤轴向直径为01 m, .8 m-9 2万方数据都无法避开的. 沿用OTDR的损耗测试 四点法 来对
结论
光缆进站后的成端质量的优劣, 将直接影响光纤链路的传输性能及整个系统的通信质量. 因此, 采用合理、可靠的成端方式至关重要. 特别是光缆城域网大规模普及应用的今天,光缆的成端工艺更迫切需要标准化, 规范化. 而欲达到此目的, 相应的解决方案除了光缆技 术人员不断地在工程中总结,完善成端工艺外,尚需 T B X 柜式O F -O , D 生产商家将产品在出厂前就通过工程应用来论证其设计是否科学, 并且在产品出厂时配备 建议使用的说明书,进一步来提高光缆通信工程的质量.
熔接点的损耗值进行测试,显然行不通. 但改用O R的光纤衰减测试的 D T 两点法 却可 , 推算出熔接损耗. 即将OTDR的两个测试点在设置上分 别避开OTDR测试曲线的前端及末端的两个菲涅尔反 射峰, 记录下被测光纤的公里衰减值, 并根据其值的大 小与国家规定的标准相比较, 来确定成端接续质量的好 坏.另外局域网中光纤路径较短,成端者也可通过对 O D 的背向散射曲线波形进行观侧. TR 即根据其波形的 始端至中部是否平坦, 来判定其熔接值大小. 当测试曲 线无明显的下降台阶时, 即可认为成端熔接值合格. 若 测试曲线有台阶则需重新熔接.
C. 光纤测试的步骤是什么
对光纤参数的测试方法参照国标中相关的试验方法进行,下面列举出一些光纤基本参数的测试方法。光纤的特性参数中,几何特性参数对光纤的包层直径、包层不圆度、芯/包层同心度误差的测试方法做出相关说明;光学特性参数对模场直径、单模光纤的截止波长、成缆单模光纤的截止波长的测试方法做出相关说明;传输特性参数对光纤的衰减、波长色散的测试方法做出相关说明。2.1、光纤几何特性参数测试光纤的折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试方法。测量包层直径、包层不圆度、芯/包层同心度误差的测试方法是折射近场法、横向干涉法和近场光分布法(横截面几何尺寸测定)。光纤的折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试方法有三种。●折射近场法折射近场法是多模光纤和单模光纤折射率分布测定的基准试验方法(RTM),也是多模光纤尺寸参数测定的基准试验方法和单模光纤尺寸参数测定的替代试验方法(ATM)。折射近场测量是一种直接和精确的测量。它能直接测量光纤(纤芯和包层)横截面折射率变化,具有高分辨率,经定标可给出折射率绝对值。由折射率剖面图可确定多模光纤和单模光纤的几何参数及多模光纤的最大理论数值孔径。●横向干涉法横向干涉法是折射率剖面和尺寸参数测定的替代试验方法(ATM)。横向干涉法采用干涉显微镜,在垂直于光纤试样轴线方向上照明试样,产生干涉条纹,通过视频检测和计算机处理获取折射率剖面。●近场光分布法这种方法是多模光纤几何尺寸测定的替代试验方法(ATM)和单模光纤几何尺寸(除模场直径)测定的基准试验方法(RTM)。通过对被测光纤输出端面上近场光分布进行分析,确定光纤横截面几何尺寸参数。可以采用灰度法和近场扫描法。灰度法用视频系统实现两维(x-y)近场扫描,近场扫描法只进行一维近场扫描。由于纤芯不圆度的影响,近场扫描法与灰度法得出的纤芯直径可能有差别。纤芯不圆度可以通过多轴扫描来确定。一般商用仪表折射率分布的测试方法是折射近场法。测试中使用的仪表是光纤几何参数和折射率分布测量仪。测试步骤如下:①试样制备时应注意试样端面清洁、光滑并垂直于光纤轴。②测量包层时,端面倾斜角应小于1°。控制端面损伤,使其对测量精度的影响最小。③注意避免光纤的小弯曲。④将被测光纤剥除被覆层,用专用光纤切割刀切割出平整的端面, 放入光纤样品盒中,样品盒中注入折射率稍高于光纤包层折射率的折射率匹配液。⑤将光纤样品盒垂直放在光纤折射率分布测量仪的光源和光探测器之间,进行x-y方向的扫描测试。⑥通过分析得到光纤折射率分布、包层直径、包层不圆度、芯/包层同心度误差的测试数据。2.2、光纤光学特性参数测试(1)单模光纤模场直径的测试方法模场直径是单模光纤基模(LP01)模场强度空间分布的一种度量,它取决于该光纤的特性。模场直径(MFD)可在远场用远场光强分布Pm(θ)、互补孔径功率传输函数α(θ)和在近场用近场光强分布f2(r)来测定。模场直径定义与测量方法严格相关。单模光纤模场直径的测试方法有三种。●直接远场扫描法直接远场扫描法是测量单模光纤模场直径的基准试验方法(RTM)。它直接按照柏特曼(Petermann)远场定义,通过测量光纤远场辐射图计算出单模光纤的模场直径。●远场可变孔径法远场可变孔径法是测量单模光纤模场直径的替代试验方法(ATM)。它通过测量光功率穿过不同尺寸孔径的两维远场图计算出单模光纤的模场直径,计算模场直径的数学基础是柏特曼远场定义。●近场扫描法近场扫描法是测量单模光纤模场直径的替代试验方法(ATM)。它通过测量光纤径向近场图计算出单模光纤的模场直径,计算模场直径的数学基础是柏特曼远场定义。一般商用仪表模场直径测试方法是远场变孔径法(VAFF)。测试中使用的仪表是光纤模场直径和衰减谱测量仪。测试步骤如下:●准备2m(±0.2m)的光纤样品,两端剥除被覆层,放在光纤夹具中,用专用光纤切割刀切割出平整的端面。●将被测光纤连接入测量仪的输入和输出端,检查光接收端的聚焦状态,如果曲线不在屏幕的正中央或光纤端面不够清晰,则需要进行位置和焦距的调整。●在光源的输出端保持测试光纤的注入条件不变,打一个半径30mm的小环,滤除LP11模的影响,进行模场直径的测试。通过分析得到光纤模场直径的测试数据。(2)单模光纤截止波长和成缆单模光纤截止波长的测试方法测量单模光纤的截止波长和成缆单模光纤的截止波长的测试方法是传输功率法。当光纤中的模大体上被均匀激励情况下,包括注入较高次模在内的总光功率与基模光功率之比随波长减小到规定值(0.1dB)时所对应的较大波长就是截止波长。传输功率法根据截止波长的定义,在一定条件下,把通过被测光纤(或光缆)的传输功率与参考传输功率随波长的变化相比较,得出光纤(或光缆)的截止波长值。一般商用仪表模场直径测试方法是传输功率法。测试中使用的仪表是光纤模场直径和衰减谱测量仪。测试步骤如下:①在样品制备时,单模光纤的截止波长的测试使用2m(±0.2m)的光纤样品,成缆单模光纤的截止波长的测试使用22m的已成缆单模光纤。②将测试光纤的两端剥除被覆层, 放在光纤夹具中,用专用光纤切割刀切割出平整的端面。③将被测光纤连接入测量仪的输入和输出端, 检查光接收端的聚焦状态, 如果曲线不在其屏幕的正中央或光纤端面不够清晰, 则需要进行位置和焦距的调整。④先在测试光纤不打小环的情况下,测试参考传输功率。⑤再将测试光纤在注入端打一个半径30mm的小环,滤除LP11模的影响,测试此时的传输功率。⑥将两条传输功率测试曲线相比较,通过数据分析处理,得到光纤(或光缆)的截止波长值。2.3、光纤传输特性参数测试(1)衰减的测试方法衰减是光纤中光功率减少量的一种度量,它取决于光纤的性质和长度,并受测量条件的影响。衰减的主要测试方法如下:●截断法截断法是测量光纤衰减特性的基准试验方法(RTM),在不改变注入条件时测出通过光纤两横截面的光功率,从而直接得到光纤衰减。●插入损耗法插入损耗法是测量光纤衰减特性的替代试验方法(ATM),原理上类似于截断法,但光纤注入端的光功率是注入系统输出端的出射光功率。测得的光纤衰减中包含了试验装置的衰减,必须分别用附加连接器损耗和参考光纤段损耗对测量结果加以修正。●后向散射法后向散射法是测量光纤衰减特性的替代试验方法(ATM),它测量从光纤中不同点后向散射至该光纤始端的后向散射光功率。这是一种单端测量方法。一般商用仪表衰减的测试方法是截断法和后向散射法。截断法测试中使用的仪表是光纤模场直径和衰减谱测量仪。测试步骤如下:①准备不短于1km或更长一些(一般一个光纤盘长:25km)的光纤样品,两端剥除被覆层, 放在光纤夹具中,用专用光纤切割刀切割出平整的端面。②将测试光纤盘的外端光纤通过专用夹具连接仪表的发射端,将测试光纤盘的内端光纤通过专用夹具连接仪表的接收端,检查光接收端的聚焦状态, 如果曲线不在屏幕的正中央或光纤端面不够清晰, 则需要进行位置和焦距的调整。③在光纤注入端打一个半径30mm的小环,滤除LP11模的影响,测试此时的传输功率。④保持光源的注入状态不变(在光纤注入端打一个半径30mm的小环),将测试光纤样品截断为2m的试样,光纤通过专用夹具连接仪表的接收端,检查光接收端的聚焦状态, 如果曲线不在屏幕的正中央或光纤端面不够清晰,则需要进行位置和焦距的调整。测试此时的传输功率。将两条传输功率测试曲线相比较,通过数据分析处理,得到光纤在1310nm和1550nm波段的衰减谱特性。后向散射法测试中使用的仪表是光时域反射计。测试步骤如下:①将测试光纤盘的外端通过熔接光纤连接器或裸纤适配器,接入光时域反射计进行测试。②测试中光时域反射计使用最小二乘法(LSA)计算光纤的衰减,此方法可忽略光纤中可能的熔接或接头损耗对光纤链路测试造成的影响。③如需分段测试光纤链路的衰减可使用两点法进行测试。④光纤衰减测试中,应选择光纤测试曲线中的线性区域,避开测试曲线近端的饱和区域和末端的反射区域,测试两点间的光纤衰减(dB/km)。⑤更改光时域反射计的测试波长,分别对1310nm和1550nm波长处的光纤衰减特性进行测试分析。实际测试中,可以通过截断法和后向散射法两种测试方法验证光纤衰减的测试数据。对于带有光纤连接器的测试光纤样品,为了不破坏已安装的光纤连接器,则只能使用后向散射法进行单端非破坏性测试。(2)波长色散的测试方法波长色散是由组成光源谱的不同波长的光波以不同群速度传输引起的光纤中每单位光源谱宽的光脉冲展宽,用ps/nm表示。它取决于该光纤的特性和长度。波长色散的主要测试方法如下:●相移法相移法是测量光纤波长色散的基准试验方法(RTM)。它在频域中通过检测、记录和处理不同波长正弦调制信号的相移来测量不同波长信号的群时延,从而推导出光纤波长色散。●脉冲时延法脉冲时延法是测量光纤波长色散的替代试验方法(ATM)。它在时域中通过直接检测、记录和处理不同波长脉冲信号的群时延,从而推导出光纤波长色散。●微分相移法微分相移法是测量光纤波长色散的替代试验方法(ATM)。它在1000nm~1700nm波长范围内由两个相近波长间的微分群时延来测量特定波长上的波长色散系数。一般商用仪表波长色散的测试方法是相移法。测试中使用的设备是色散测量仪。测试步骤如下:①测试光纤样品应不短于1km。光纤两端做好光纤连接器。②在色散测试时应先用两根标准光纤跳线分别连接色散测量仪的输入端和输出端,通过法兰盘连接两根光纤跳线的另一端,将色散测量仪自环,测试此时的参考值。③再将测试光纤通过法兰盘接入光纤环路。④根据测试光纤样品,设定光纤类型;数据拟合方式;光纤测试中的群折射率;测试光纤长度;;测试波长范围;波长间隔等。⑤测试光纤的零色散波长、零色散斜率和色散系数等。通过对测试数据的分析处理得到光纤的色散特性。光纤参数测试中的不确定度评定方法:光纤参数测试中的不确定度评定一般参考下面提到的方法进行。主要考虑测量仪器引入的不确定度和测量重复性两方面因素。3、光纤参数测试中普遍存在的问题以单模光纤B1.1类(即非色散位移单模光纤)、B1.3类(即波长段扩展的非色散位移单模光纤)和B4类(即非零色散位移单模光纤)为例说明光纤参数测试中普遍存在的问题。光纤参数测试中普遍存在的问题是单模光纤的截止波长指标超标的问题。
根据国内光纤光缆标准,截止波长可分为光缆截止波长λCC、光纤截止波长λC和跳线光缆截止波长λCj,光纤光缆的截止波长指标应符合表二中的相应规定。光缆使用长度不小于22m时应符合表二中λCC规定,使用长度小于22m但不小于2m时应符合表二中λCj规定,使用长度小于2m时应符合表二中 λC规定,以防止传输时可能产生的模式噪声。
D. 光缆监测系统的监测方式
备纤监测:单备纤监测和双备纤监测。
在线监测:
利用业务纤实现监控和测试功能,会用到WDM。
E. 怎么测试光纤的光衰 怎样检测光纤线
检测光纤线的操作方法和步骤如下:
1、首先,使用尾纤将OTDR连接到待检测光纤的光纤盘,如下图所示,然后进入下一步。
F. 简述光缆测试的四个方面
飞秒检测方法先光缆光纤测试主要是下面几个方面:
1)用OTDR测试光纤通断,测试比例100%;
2)用光源、光功率计测试光纤双波长双向全程衰减,测试比例为所有纤芯的25%,尽量安排测试不同纤芯带或不同纤芯束的纤芯;
3)用OTDR测试光纤双波长单向后向散射曲线,测试比例为所有纤芯的25%,尽量安排测试不同纤芯带或不同纤芯束的纤芯;
4)测试光纤PMD值(中继光缆才需测试),测试比例为所有纤芯的25%,尽量安排测试不同纤芯带或不同纤芯束的纤芯;
5)测试1550nm波长的光缆接头插损,在所有接头中抽测一个,测试比例为所有纤芯的10%,尽量安排测试不同纤芯带或不同纤芯束的纤芯。
G. 光缆测试怎么测
一、OTDR的工作原理:
光纤光缆测试是光缆施工、维护、抢修重要技术手段,采用OTDR(光时域反射仪)进行光纤连接的现场监视和连接损 耗测量评价,是目前最有效的方式。这种方法直观、可信并能打印出光纤后向散射信号曲线。另外,在监测的同时可以比较精确地测出由局内至各接头点的实际传输 距离,对维护中,精确查找故障、有效处理故障是十分必要的。同时要求维护人员掌握仪表性能,
操作技能熟练,精确判断信号曲线特征。
美国安捷伦E6000C
加拿大EXFO FTB150
日本安立MT9080
日本横河AQ7275
美国JDSU MTS6000
美国网泰 CMA4000I
OTDR 的英文全称是Optical Time Domain Reflectometer,中文意思为光时域反射仪。OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体 化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。
OTDR测试是通过发射 光脉冲到光纤内,然后在OTDR端口接收返回的信息来进行。当光脉冲在光纤内传输时,会由于光纤本身的性质,
连接器
,接合点,弯曲或其它类似的事件而产生 散射,反射。其中一部分的散射和反射就会返回到OTDR中。返回的有用信息由OTDR的探测器来测量,它们就作为光纤内不同位置上的时间或曲线片断。从发 射信号到返回信号所用的时间,再确定光在玻璃物质中的速度,就可以计算出距离。
在这个公式里,c是光在真空中的速度,而t是信号发射后到接收到信号(双程)的总时间(两值相乘除以2后就是单程的距离)。因为光在玻璃中要比在真空中的速度慢,所以为了精确地测量距离,被测的光纤必须要指明折射率(IOR)。
H. 光缆的光纤检测
光纤检测的主要目的是保证系统连接的质量,减少故障因素以及故障时找出光纤的故障点。检测方法很多,主要分为人工简易测量和精密仪器测量。
1.人工简易测量:
这种方法一般用于快速检测光纤的通断和施工时用来分辨所做的光纤。它是用一个简易光源从光纤的一端打入可见光,从另一端观察哪一根发光来实现。这种方法虽然简便,但它不能定量测量光纤的衰减和光纤的断点。
2.精密仪器测量:
使用光功率计或光时域反射图示仪(OTDR)对光纤进行定量测量,可测出光纤的衰减和接头的衰减,甚至可测出光纤的断点位置。这种测量可用来定量分析光纤网络出现故障的原因和对光纤网络产品进行评价。
I. 如何测试光纤!
一根光纤熔接效果如何、光纤中间是否有断开的地方、光纤实际使用对光的衰耗是否能够达标,需要用仪表进行测试。
一般常用测试设备连接光纤,通过对光纤打光(发射一定波长的光信号)进行测试。“光纤打光”是在光纤维护测试是说的俗语,其实就是把光纤接到红光笔或光源上,来判断光纤通断和光纤衰耗情况。根据使用设备不同,有如下几种方法:
1、用红光笔“打光”。红光笔发射的是可见光,用来判断短距离光纤中间是否有断开的地方。
2、用激光光源“打光”。光纤另一头接光功率计测试,根据光源发光强度和光功率计接收到的光源强度,来测试折断光纤衰耗情况。
3、用OTDR设备“打光”,这种方法一般用于比较长距离的光纤测试。光纤一端接设备,设备发射光信号,通过设备检测光信号在光纤里面不同衰耗点和断点处反射回来的光信号,计算出该点距离测试点的实际长度。从而,可以快速判断出光纤断点或熔接不好的位置。