导航:首页 > 解决方法 > 表面缺陷检测方法

表面缺陷检测方法

发布时间:2022-01-15 04:25:37

‘壹’ 常见的焊接缺陷有哪些焊缝缺陷检验方法有哪几种

焊缝缺陷的种类很多,按其在焊缝中的位置,可分为内部缺陷与外部缺陷两大类。外部缺陷位于焊缝外表面,用肉眼或低倍放大镜可以看到,例如,焊缝尺寸不符合要求,咬边、焊瘤、弧坑、气孔、裂纹、夹渣、未焊透、未溶合等。内部缺陷位于焊缝的内部。这类缺陷用破坏性检验或探伤方法来发现,如未焊透、未溶合、气孔、裂纹、夹渣等。

焊接缺陷检验的常用方法

1,外观检验,通常就是靠肉眼观测检验,借助一些工具能大大提高检验的准确性,常用的工具有:焊缝检验规、卷尺、钢直尺、低倍放大镜等,一般是检验焊缝外部的缺陷。

2气密性检验,一般是对熔器、管道等须要对其进行气密性检验,根据被测对象的要求不同进行不一样的检验。①沉水试验,将充有一定压力的容器放在水槽内下压一定深度,然后缓慢转动,观察容器上是否有气泡来断定是否渗漏。②肥皂水检验,在充有一压力气体的容器上用蘸有皂液的毛刷依次向焊缝涂抹,全部未出现气泡则为合格。

3,煤油试验,它是利用煤油的强渗透能力,对焊缝致密性进行检验在焊缝一侧(容器的外侧)涂石灰水,石灰水干后再焊缝的另一侧(容器的内侧)涂煤油,检验白石灰上是否出现油斑。

4,压力试验,也叫耐压试验,它包括水压试验和气压试验。压力试验是通过对容器加压(水压或气压)到试验压力,检验其有无渗漏和保压情况的检验方法。试验压力应高于工作压力,否则不能保证容器的安全运行。压力试验用于评定锅炉、压力容器、压力管道等焊接构件的整体强度性能、变形量大小及有无渗漏现象。

压力试验一方面检验结构的致密性,另一方面还能检演结构的强度。水压试验,当充满水同时完全排净空气后关闭水阀,再用高压水泵对容器分级加压直至达到试验压力(一般为工作压力的1.25~1.5倍);检验焊缝有无水珠(渗漏),如果有说明有渗漏;

检验保压情况,停止加压后保压5~10min,压力应无明显下降。气压试验,采用高压气泵对容器进行逐级升压每升一级保压一定时间,直至升到规定的试验压力,用皂水检查是否渗漏,并检查保压情况。

5,射线检测,射线在穿透物质过程中因吸收和散射而使强度减弱、衰减,衰减程度取决于穿透物质的衰减系数和穿透物质的厚度,如果被透照工件内部存在缺陷,且缺陷介质与被检工件对射线衰减程度不同,会使得透过工件的射线产生强度差异,使胶片的感光程度不同,经暗室处理后底片上有缺陷的部位黑度较大,评片人员可凭此判断缺陷情况。射线检测应由具有专职资格证的人员进行操作。

6,超声检测,它是利用超声波在介质中传播的声学特性,检测金属材料及其工件内部或表面缺陷的方法。超声波在金属中的传播过程中遇到界面则出现反射,在检测时超声波在工件的两表面都有反射脉冲。如果工件内部有缺陷的话,则两界的脉冲中间会出现第三个脉冲,根据此脉冲的位置可以判断出缺陷位置。超声波探伤设备比较轻便灵活、探测范围广。

7,磁粉检测,铁磁性金属材料的导磁率比空气要大得多,当它在磁场中被磁化以后,磁力线将集中在材料中,如果材料的表面或近表面存在气孔,裂纹和夹渣等缺陷,磁力线则难于穿过这些缺陷,因此就会在缺陷处形成局部漏磁场,此时在材料上撒上磁粉,磁粉将被漏磁场吸引力聚集在缺陷处,进而显示出缺陷的宏观痕迹。经过磁粉检测的工件要进行退磁处理。

8,其它检验:①磁轭法检验;②渗透检测;③涡流检测;④弯曲试验;⑤冲击试验;⑥金相检验。

(1)表面缺陷检测方法扩展阅读:

焊接缺陷的分类

1,,按产生原因有:①结构缺陷(构造不连续、焊缝布置不良引起的应力和变形、错边);②工艺缺陷(焊角尺寸不合适、余高过大、成形不良、电弧擦伤、夹渣、凹坑、未焊满、烧穿、未焊透、未熔合、焊瘤、咬边);③冶金缺陷(裂纹、气孔、夹杂物、性能恶化)。

2,按性质分有:①形状缺陷;②未熔合未焊透;③固体夹杂;④孔穴;⑤裂纹(热裂纹、焊趾裂纹、层状撕裂);⑥其它缺陷。

3,按在焊缝中的位置分有:①外部缺陷(焊缝尺寸及形状不符合要求、严重飞溅、下塌与烧穿、弧坑、焊瘤、咬边、严重变形);②内部缺陷(气孔、未熔合、未焊透、夹渣、热裂纹<结晶裂纹、液化裂纹、多边化裂纹>、再热裂纹、冷裂纹<延迟裂纹、淬火裂纹、低塑性脆化裂纹>、层状撕裂、应力腐蚀裂纹);③组织缺陷(淬硬组织、氧化、疏松、其它组织<如魏氏组织、晶粒变粗、晶粒度不均匀等脆化现象,出现一些碳化物、氮化物等硬化相,以及严重偏析和焊缝弱化现象等问题>)。

‘贰’ 缺陷检测可以检测哪些产品

缺陷检测通常是指对物品表面缺陷的检测,表面缺陷检测是采用先进的机器视觉检测技术,对工件表面的斑点、凹坑、划痕、色差、缺损等缺陷进行检测。

‘叁’ 机器视觉表面缺陷检测,表面瑕疵检测都什么玩意

机器视觉检测就是用机器代替人眼来做测量和判断,表面缺陷和表面瑕疵,就是指物体表面有划痕,有污点,缺料等,机器视觉表面缺陷检测就是指用机器代替人工把物件表面有划痕、污点,缺料,字符logo错误的物件挑选出来
下面以伟顾德机器视觉检测设备的工作流程为例,看看机器视觉检测设备是怎样工作的
1、物料系统把需要检测的物件按照需求排列好并输送到检测盘上
2、当物料在检测盘上运行到摄像机面前是,摄像机对物件进行拍照,并把照片传输给电脑
3、电脑根据程程序对图像进行分析,当电脑判断物件有缺陷和瑕疵时,控制吹气阀门将缺陷物件筛选出来,良品物件继续在检测盘上输送至良品收集器具中,至此,物件检测筛选完成。
机器视觉表面缺陷检测在实际检测过程中还涉及到很多东西,比如光源、计算软件,物料输送系统等,这里就不一一赘述。

‘肆’ 金属表面缺陷检测方法有哪些

1、轮廓测量仪

轮廓测量仪采用均布的4只二维激光测量传感器测量轧材截面,4只传感器包容轧材整个截面,真正做到无盲区测量。其应用范围可以是任何截面形状的轮廓,如圆形、方形、螺纹钢、六角形、轨梁、T型、H型和其他长材产品。测量软件系统根据各传感器的测量数据拟合截面形状,可在软件界面直观显示轧材的截面形状及关键尺寸。应用于轧钢、有色金属等的在线表面缺陷监测。

2、漏磁检测

漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。

3、红外线检测

红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。

4、超声波探伤检测

超声波检测是利用声脉在缺陷处发生特性变化的原理来检测。声波在工件内的反射状况就会显示在荧光屏上,根据反射波的时间及形状来判断工件内部缺陷及材料性质的方法。超声波探伤技术多应用于金属管道内部的缺陷检测。

5、光学机器视觉智能检测

光学机器视觉智能检测的基本原理是:一定的光源照在待测金属表面上,利用高速CCD摄像机获得连铸板坯表面图像,通过图像处理提取图像特征向量,通过分类器对表面缺陷进行检测与分类。

这5种方法均可检测轧钢及金属表面的缺陷尺寸,轮廓测量仪更是可在线无损检测轧材表面缺陷的设备,检测精度高,对轧材的材质、温度等都无要求,可以说是在线金属缺陷检测的重要帮手。

‘伍’ 无纺布表面缺陷要怎么检测

基于视觉技术的外无纺布表面缺陷系统,检测精度高、速度快,无纺布表面缺陷检测系统使用人工智能技术,结合工业相机可在材料生产过程中全面检测材料表面质量,正确提供疵点各项参数,可检测断经、断纬、破洞、油污、经纬污、双纬、稀弄、粗节纱、空织、松紧经、圈纬、小散丝、松纬、经起毛、开口不清等瑕疵进行检测,具体可参考国辰机器人。

‘陆’ 白车身外表面件缺陷检查方法

白车身外表面件缺陷检查方法有以下几种:

1 表面质量缺陷及检测

冲压件的表面质量缺陷可分为A类缺陷、B类缺陷、C类缺陷三种类型。

A类缺陷是顾客所不能接受的缺陷,在使用过程中可能存在极大的安全隐患;

B类缺陷是顾客可以看到或摸到的缺陷,一般指比较严重的配合缺陷;

C类缺陷是指用油石打磨后才会发现的缺陷,通过模具结构调整是可以改进的,该缺陷一般不会引起用户的索赔。
冲压件表面质量检测方法可分为外观检测方法和尺寸检测方法两种类型。

外观检测可通过观察者表面目视、检查员触摸检查及表面油石打磨冲压件等方式进行。尺寸检测则需通过借助测量工具进行检测, 如利用检具, 检测冲压件外形和尺寸精度;或使用三坐标测量仪, 对冲压件孔的位置进行精密测量。




2 冲压缺陷的影响因素

汽车金属制件在冲压成型过程中,可能会存在起皱、断裂、回弹等典型缺陷[1],导致冲压缺陷的因素可归结为以下几点:

1、理论上,通常应用成型极限曲线(FLD)表示板料成形性能,其中金属材料的应变硬化指数n和厚向硬度指数r对曲线拟合效果影响显着。

在冲压变形中,应变硬化指数n越高,变形裕度越大,材料承载能力越强,但材料加工硬化能力随之增强,且易发生颈缩缺陷。厚向硬度指数r越大,材料拉伸性能越好,整体厚度变形均匀,金属板材一般具有较好的成形性。

2、不同冲压方法应采用不同类型模具,同时对模具材料要求也有差异。模具表面硬度和粗糙度会对制件拉毛缺陷产生影响。模具工作表面有划伤,模具材料内部含有杂质,都会影响制件表面质量,使其产生拉伤、压痕等缺陷。

凸、凹模之间的间隙,对冲裁件质量有着极其重要的影响。若间隙过小,凸、凹模之间的材料会被二次剪切,断面出现较长的毛刺;若间隙过大,材料的弯曲与拉伸增大,容易形成一定厚度的毛刺,且制件会产生翘曲变形。因此,凸、凹模间隙应均匀合理。

此外,凸、凹模圆角半径,对拉深件质量有着显着影响。若半径过大,板料与模具间的接触面积会减少,即板料处于悬空状态,进而易于产生起皱缺陷;若半径过小,板料挤压作用和摩擦阻力增大,制件表面容易产生断裂缺陷。因而,凸、凹模圆角半径选取不宜过大,也不能过小。

3、影响冲压缺陷的工艺参数主要包括压边力、冲压速度、拉延筋的设置、润滑油的使用以及成型工序的设定等。

压边力过小以及压边圈上的润滑油过多,都会增大进料速度,进而引起板料起皱缺陷;压边力太大以及润滑条件不好,会引起凸模与材料相对滑动减弱,导致危险断面变薄破裂。

由于大型制件结构的不对称性,板料在成型时材料流入速度不一致,因而需要在压边圈上设置拉延筋以控制不同区域的板料流入速度,使冲压件得到均匀变形。

冲压工序的设置不是固定的,针对同一个零件,不同厂家可能会给出不同的工艺方案,但基本坚持一个原则,即在结构不发生干涉的情况下,尽可能采用最少的工序加工生产。

另外,随着计算机技术的发展,目前可利用autoform/abaqus等多种CAE分析软件对冲压工艺过程进行数值模拟[2],优化工艺过程及参数,以降低冲压工艺缺陷,降低生产成本。

3 冲压件质量改进措施

冲压工艺可分为分离工序和成型工序两大类。分离工序包括落料、冲孔、修边等,成型工序包括拉伸、弯曲、翻边等[3].本文将针对各工序中可能会存在的起皱、开裂、回弹缺陷,提出较为详细的预防措施与解决方案。

3.1 起皱

起皱缺陷产生的根本原因是由于板料受到挤压,当平面方向的主、次应力达到一定程度时,厚度方向失稳。按照皱纹形成原因不同,可将其分为两种类型,第一种是由于进入凹模腔内材料过多而形成的材料堆积起皱;第二种是由于板料厚度方向失稳或拉应力不均匀而产生的失稳起皱。

为了抑制该缺陷,具体的解决思路如下:(1)从产品设计角度考虑:尽量减小翻边高度;使造型剧变区域呈顺滑状态连接;对于产品易起皱部位可适当地增加吸料造型;

(2)从冲压工艺设计方面出发:增大压边力,控制进料速度;工艺补充增加圆形或方形拉延筋;在合理范围内增加成形工序;

(3)对于冲压材料的选择:在满足产品性能的情况下,对于一些易起皱的零件,应选用成形性较好的材料。

3.2 开裂

开裂缺陷形成的根本原因在于材料在拉伸的过程中,应变超过其极限,最直观的表现是制件表面产生肉眼可见的裂纹。

通常可以将其分为三种类型:第一种是由于材料抗拉强度不足而产生的破裂,断裂原因一般是由于凸、凹模圆角处局部受力过大造成的;第二种是由于材料变形量不足而破裂,如尖点部位的开裂;第三种是由于材料内有杂质引起的裂纹。

因此,为了预防断裂缺陷,最根本的措施是减少应力集中现象。具体方案如下:

(1)选择合理的坯料尺寸和形状;

(2)调整拉延筋参数,防止由于胀力过大引起破裂;

(3)增加工艺切口,保证材料合理流动,变形均匀;

(4)改善润滑条件,减小摩擦力,增大进料速度;

(5)减小压边力或采用可变的压边力,以控制进料阻力;

(6)采用延展性和成形性较好的材料,减少裂纹。

3.3 回弹

绝大部分冲压制件都会产生回弹缺陷,回弹产生的根本原因可归纳如下,即零件在冲压变形后,材料由于弹性卸载,导致局部或整体发生变形。冲压材料、压力大小和模具状态等都会影响回弹。

(1)选择合理的坯料尺寸和形状;

(2)调整拉延筋参数,防止由于胀力过大引起破裂;

(3)增加工艺切口,保证材料合理流动,变形均匀;

(4)改善润滑条件,减小摩擦力,增大进料速度;

(5)减小压边力或采用可变的压边力,以控制进料阻力;

(6)采用延展性和成形性较好的材料,减少裂纹。

对于回弹缺陷,解决思路如下:

(1)补偿法,即根据弯曲成形后冲压件回弹量的大小,预先在模具上作出等于此工件回弹量的坡度,来补偿工件成型后的回弹,该方法中所需补偿的回弹量大小主要依据人工经验估计或CAE数值模拟分析结果来确定

(2)拉弯法:在板料弯曲的同时施加拉力,以此使得板料内部的应力分布较为均匀,进而减少回弹量;

(3)局部加压法:使变形区变为三向受压的应力状态,从根本上改变弹性变形的性质;

(4)通过局部加筋及其他增加刚度的方法,以提高冲压件刚度,减少变形。

‘柒’ 铸件表面及近表面缺陷怎么检测

1)液体渗透检测
液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。
2)涡流检测
涡流检测适用于检查表面以下一般不大于6~7MM深的缺陷。涡流检测分放置式线圈法和穿过式线圈法2种。当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在,涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。
3)磁粉检测
磁粉检测适合于检测表面缺陷及表面以下数毫米深的缺陷,它需要直流(或交流)磁化设备和磁粉(或磁悬浮液)才能进行检测操作。磁化设备用来在铸件内外表面产生磁场,磁粉或磁悬浮液用来显示缺陷。当在铸件一定范围内产生磁场时,磁化区域内的缺陷就会产生漏磁场,当撒上磁粉或悬浮液时,磁粉被吸住,这样就可以显示出缺陷来。这样显示出的缺陷基本上都是横切磁力线的缺陷,对于平行于磁力线的长条型缺陷则显示不出来,为此,操作时需要不断改变磁化方向,以保证能够检查出未知方向的各个缺陷。

‘捌’ 目前金属表面检测的主要方法有哪些

主流金属制品表面缺陷在线检测方法。
一、漏磁检测
漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。在材料内部的磁力线遇到由缺陷产生的铁磁体间断时,磁力线将会发生聚焦或畸变,这一畸变扩散到材料本身之外,即形成可检测的磁场信号。采用磁敏元件检测漏磁场便可得到有关缺陷信息。因此,漏磁检测以磁敏电子装置与磁化设备组成检测传感器,将漏磁场转变为电信号提供给二次仪表。
漏磁检测技术的整个过程为:激磁-缺陷产生漏磁场-传感器获取信号-信号处理-分析判断。在磁性无损检测中,磁化时实现检测的第一步,它决定着被测量对象(如裂纹)能不能产出足够的可测量和可分辨的磁场信号,同时也影响着检测信号的性能,故要求增强被测磁化缺陷的漏磁信号。被测构件的磁化由磁化器来实现,主要包括磁场源和磁回路等部分。因此,针对被测构件特点和测量目的,选择合适的磁源和设计磁回路是磁化器优化的关键。
漏磁检测金属表面缺陷的物理基础使带有缺陷的铁磁件在磁场中被磁化后,在缺陷处会产生漏磁场,通过检测漏磁场来辩识有无缺陷。因此,研究缺陷漏磁场的特点,确定缺陷的特征,就成为漏磁检测理论和技术的关键。要测量漏磁场,测量装置须具有较高的灵敏度,特别是能测空间点磁场,还应有较大的测量范围和频带;测量装置须具有二维及三维的精确步进或调整能力,以确定传感器的空间位置;同时,应用先进的信号处理技术去除噪声,确定实际的漏磁场量。Foerster,Athertion 已成功应用霍尔器件检测缺陷,霍尔器件可在z—Y二维空间步进的最小间隔分别为2μm和0.1μm。
漏磁检测不仅能检测表面缺陷,且能检测内部微小缺陷;可检测到5X10mm。的微小缺陷;造价较低廉。其缺点是,只能用于金属材料的检测,无法识别缺陷种类。目前,漏磁检测在低温金属材料缺陷检测方面已进入实用阶段。如日本川崎公司千叶厂于1993年开发出在线非金属夹杂物检测装置;日本NKK公司福冈厂于同年研制出一种超高灵敏度的磁敏传感器,用于检测钢板表面缺陷。
二、红外线检测与技术
红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1 mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。该升温取决于缺陷的平均深度、线圈工作频率、特定输入电能,以及被检钢坯电性能、热性能、感应线圈宽度和钢运动速度等因素。当其它各种因素在一定范围内保持恒定时,就可通过检测局部温升值来计算缺陷深度,而局部温升值可通过红外线检测技术加以检定。利用该技术,挪威Elkem公司于1990年研制出Ther—mOMatic连铸钢坯自动检测系统,日本茨城大学工学部的冈本芳三等在检测板坯试件表面裂纹和微小针孔的实验研究中也利用此法得到较满意的结果。
三、超声波探伤技术
超声波检测是利用声脉在缺陷处发生特性变化的原理来检测。接触法是探头与工件表面之间经一层薄的起传递超声波能量作用的耦合剂直接接触。为避免空气层产生强烈反射,在探测时须将接触层间的空气排除干净,使声波入射工件,操作方便,但其对被测工件的表面光洁度要求较高。液浸法是将探头与工件全部浸入于液体或探头与工件之间,局部以充液体进行探伤的方法。脉冲反射法是当脉冲超声波入射至被测工件后,声波在工件内的反射状况就会显示在荧光屏上,根据反射波的时间及形状来判断工件内部缺陷及材料性质的方法。目前,超声波探伤技术已成功应用于金属管道内部的缺陷检测。
四、光学检测法
机器视觉是以图像处理理论为核心,属于人工智能范畴的一个领域,它是以数字图像处理、模式识别、计算机技术为基础的信息处理科学的重要分支,广泛应用于各种无损检测技术中。基于机器视觉的连铸板坯表面缺陷检测方法的基本原理是:一定的光源照在待测金属表面上,利用高速CCD摄像机获得连铸板坯表面图像,通过图像处理提取图像特征向量,通过分类器对表面缺陷进行检测与分类。20世纪70年代中期,El本Jil崎公司就开始研制镀锡板在线机器视觉检测装置 。1988年,美国Sick光电子公司也成功地研制出平行激光扫描检测装置,用以在线检测金属表面缺陷。基于机器视觉的表面在线检测与分类器设计的研究工作目前在国内尚处于起步阶段。1990年,华中理工大学采用激光扫描方法测量冷轧钢板宽度和检测孔洞缺陷,并开发了相应的信号处理电路;1995年又研制出冷轧连铸板坯表面轧洞、重皮和边裂等缺陷检测和最小带宽测量的实验系统。1996年,宝钢与原航天部二院联合研制出冷轧连铸板坯表面缺陷的在线检测系统,并进行了大量的在线试验研究。近年来,北京科技大学、华中科技大学等也研制出较为实用化的在线检测系统。
从检测技术的观点来看,基于机器视觉的钢表面缺陷检测系统面临困境:①要求检测到的缺陷的几何尺寸越来越小,有的甚至小于0.1 mm;② 检测对象可能处于运动状态,导致采集的图像抖动较大;③现场环境较恶劣,往往受烟尘、油污、温度高等因素的影响,引起缺陷图像信噪比下降;④表面缺陷的多样性(如冷轧连铸板坯表面可达100多种),不同缺陷之间的光学特性、电磁特性不同;有的缺陷之间的差异不明显。因此,基于机器视觉的连铸板坯表面缺陷分类器要求具有收敛速度快、鲁棒性好、自学习功能等特点。

‘玖’ 焊缝的内部缺陷如何检验焊缝的表面缺陷如何检验焊缝表面不得

设计要求全焊透的一、二级焊缝应采用超声波探伤进行内部缺陷的检验,超声波探伤不能对缺陷作出判断时,应采用射线探伤。焊缝表面缺陷的检验方法:观察检查或使用放大镜、焊缝量规和钢尺检查,当存在疑义时,采用渗透或磁粉探伤检查。焊缝表面不得有裂纹、焊瘤等缺陷。一级、二级焊缝不得有表面气孔、夹渣、弧坑裂纹、电弧擦伤等缺陷。且一级焊缝不得有咬边、未焊满、根部收缩等缺陷。〔例〕钢结构二级焊缝不得有(ADE
)缺陷。A.气孔
B.根部收缩
C.贴边
D.弧坑裂纹
E.夹渣〔解析〕规范规定,焊缝表面不得有裂纹、焊瘤等缺陷。一级、二级焊缝不得有表面气孔、夹渣、弧坑裂纹、电弧擦伤等缺陷。且一级焊缝不得有咬边、未焊满、根部收缩等缺陷。

阅读全文

与表面缺陷检测方法相关的资料

热点内容
总能找到解决的方法英语 浏览:803
原味发糕的制作方法和步骤 浏览:830
癌症状治疗方法 浏览:918
加热卷发棒使用方法 浏览:145
绝缘子金具设计步骤与方法 浏览:222
卷筒校圆方法图片 浏览:721
如何防止偷纸的方法 浏览:539
晨光修正带可替换芯安装方法 浏览:499
哪里有祛痘的方法 浏览:600
大沙子计算方法 浏览:778
运动保健方法图片 浏览:376
怎样快速知道学习方法 浏览:307
气相色谱仪使用方法 浏览:235
唱歌前保护嗓子的方法有哪些 浏览:370
催乳是什么方法 浏览:711
黄寿丹的功效与作用及食用方法 浏览:778
嘟嘟唇的操作方法与步骤 浏览:802
髌骨损伤恢复训练方法 浏览:847
页面显示打印时间设置在哪里设置方法 浏览:591
别克英朗示宽灯泡安装方法 浏览:323