导航:首页 > 解决方法 > 人脸检测方法

人脸检测方法

发布时间:2022-01-14 01:40:59

Ⅰ 在人脸识别软件系统识别的过程中,对于人脸检测,现在主流的方法都基本有啥可以的话详细介绍一下吧。

基于知识的方法

基于知识的方法(Knowledge-Based Methods)一是基于规则的人脸检测方法。规则来源于研究者关于人脸的先验知识。一般比较容易提出简单的规则来描述人脸特征和它们的相互关系。

Yang和Huang使用分层的基于知识的人脸检测方法[11]。他们的系统由3级规则组成。在最高级,通过扫描输入图像的窗口和应用每个位置的规则集找到所有可能的人脸候选区。较高级的规则通常描述人脸看起来象什么,而较低级的规则依赖于面部特征的细节。多分辨率的分层图像通过平均和二次采样生成,如图2所示。

编码规则通常在较低的分辨率下确定人脸的候选区,包括人脸的中心部分图中较浅的阴影部分,其中有个基本上相同的灰度单元。


基于特征的方法

基于特征的方法(Feature-Based Methods)不仅可以从已有的面部特征而且可以从它们的几何关系进行人脸检测。和基于知识的方法相反,它是寻找人脸的不变特征用于人脸检测。人们已经提出了许多先检测人脸面部特征,后推断人脸是否存在的方法。面部特征如眉毛、眼睛、鼻子、嘴和发际等,一般利用边缘检测器提取。根据提取的特征,建立统计模型描述特征之间的关系并确定存在的人脸。基于特征的算法存在的问题是,由于光照、噪声和遮挡等使图像特征被严重地破坏,人脸的特征边界被弱化,阴影可能引起很强的边缘,而这些边缘可能使得算法难以使用。


模板匹配的方法

Sakai等人用眼睛、鼻子、嘴和人脸轮廓等子模板建模,检测照片中的正面人脸。每一个子模板按照线分割定义。基于最大梯度变化提取输入图像的线,然后与子模板匹配。计算子图像和轮廓模板之间的相互关系检测人脸的候选区域,完成用其他子模板在候选区域的匹配。

Craw等人提出了一种基于正面人脸的形状模板即人脸的外形定位方法。用Sobel算子提取边缘,将边缘组织在一起,根据几个约束条件去搜索人脸模板。在头轮廓定位。

Govindaraju等人提出两个阶段的人脸检测方法。人脸模型根据边缘定义的特征构成。这些特征描述了正面人脸的左边、发际和右边的曲线。人脸必须是垂直、无遮挡和正面的。

基于外观的方法

基于外观的方法首先通过学习,在大量训练样本集的基础上建立一个能对人脸和非人脸样本进行正确识别的分类器,然后对被检测图像进行全局扫描,用分类器检测扫描到的图像窗口中是否包含人脸,若有则给出人脸所在的位置。

Moghaddam和Pentland提出在高维空间利用特征空间分解密度估计的概率视觉学习方法[12]。用主成分(PCA)分析来定义子空间从而最好地表示人脸模式集。主成分保存数据中主分量而丢弃了那些次分量。这种方法把向量空间分解为互相排斥和互为补充的2个子空间主子空间或特征空间和它的正交子空间。因此对象密度被分解为个2成分在主子空间由主分量张成的密度,和它的垂直成分(在标准的PCA中被丢弃的次分量)如图3所示。用多变量Gaussians和混合Gaussians密度分布进行学习人脸局部特征的统计。然后将这些概率密度用于基于最大

似然估计的对象检测。这种方法已经被用于人脸定位、编码和识别。和传统的特征脸方法相比,此方法在人脸识别方面表现出更好的性能。


可以的话去Ph一下colorreco,技术过硬,值得我们大家学习。

Ⅱ 描述人脸识别的过程

您好,方法
1、人脸检测:检测到人脸、捕捉人脸图像,通过过滤器过滤信息。
2、人脸规范化:将人脸进行大小同一化,对人脸面部区域进行切割分析。
3、人脸建模:对局部纹理和特征进行建模分析,包括26个区域以及2000多个特征。
4、分类对比:将被识别的人脸特征与数据库中人脸特征作对比,速度在100万次/秒。
5、人脸身份识别完成。

Ⅲ 人脸检测与人脸识别有什么不同

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。
人脸检测是指对于任意一幅给定的图像,采用一定的策略对其进行搜索以确定其中是否含有人脸,如果是则返回一脸的位置、大小和姿态。

如何使用doppia进行人脸检测

doppia一共提供三种人脸检测方法,分别是DPM,HeadHunter和HeadHunter_baseline,后俩者在使用上没有什么差别,只不过是选择的模型不同,而DPM则可以视为与整个doppia相对立的一部分内容,它使用matlab编译运行,本节主要阐述HeadHunter的使用方法
人脸检测模块在src/applications/objects_detection/中,假如你编译成功可以看到可执行文件objects_detection,该程序支持多种目标检测,具体要检测什么,主要看你的配置文件,人脸检测采用的配置文件是eccv2014_face_detection_pascal.config.ini,我们可以以此为模版,根据情况修改。 先说一下几个修改的地方,
save_detections = true   设置为true用于保存结果
process_folder = /opt/wangchao/new-fddb/     这个就是你图片保存的目录,注意这里只支持单层目录,假如图片存储在这个目录下的其他目录,那么是读取不了的。
method = gpu_channels  这里可以设置选择cpu或gpu等,我们选择gpu
model = ../../../data/trained_models/face_detection/headhunter.proto.bin  之前提到过HeadHunter和HeadHunter_baseline方法,其不同就在于此处所择的模型不同,我们选择的是HeadHunter,用另一种的话就把路径指向那个就行了。
score_threshold = 0.5 这是一个阈值,调低的话,可以增加召回率,相应的也会降低准确率,关于不同阈值对结果的影响建议参考论文。
还有一些其他的选项,我们暂时可以不用修,改保持默认即可。
另外,运行  ./objects_detection --help 可以看到更多的其他配置选项,接下来运行如下命令可以启动程序:
./objects_detection -c eccv2014_face_detection_pascal.config.ini --gui.disable true --gpu.device_id 1
在这里我们可以看到有俩个额外的选项–gui.disable 和 --gpu.device_id,程序规定,外部选项的优先级高于配置文件,也就是说我们可以用相同的配置文件,而在外部修改其某个选项,来方便测试,这里俩个选项也是我们常用的选项,–gui.disable用来选择是否开启gui,由于我们运行在云主机上,所以选择true,禁用gui;–gpu.device_id用来选择gpu设备,我们的机器有俩张卡,我们选择第二张卡,所以设为1,默认为0.
程序启动后会打印出很多命令,细心的可能会发现如下一条报错信息:
Error parsing text-format doppia_protobuf.DetectorModel: 2:2: Message type "doppia_protobuf.DetectorModel" has no field named "E".
无需介意这条错误信息,它并不会影响程序运行,开发者说此处报错是因为protobuf在选择表达方式,失败后会选择另一种可用的(大概就是这个意思吧),就是说你的程序是在正确运行。
程序运行结束后会在当前目录产生一个类似于2015_09_18_79659_recordings的文件夹,文件夹内有detections.data_sequence,这就是我们所要的结果,但是显然还需要进一步的处理。
 
在doppia根目录下 tools/objects_detection/detections_to_caltech.py 脚本用于帮助我们将.data_sequence转换为我们可以理解的方式,该脚本有俩个选项-i和-o,分别指定.data_sequence和输出目录。
 运行后会在输出目录产生txt文件,文件名是图片名,文件内存储着截取的人脸坐标和置信概率,至此,我们通过doppia完成了人脸检测程序,获得了我们想要的结果。
这里提供俩个脚本,分别是修改过的detections_to_caltech.py和一个人脸截取脚本,修改过后的detections_to_caltech.py可以将所有照片按指定格式存储于一个txt内,人脸截取脚本通过读入该txt从相应照片上扣取人脸。

Ⅳ 人脸识别方法

【什么是人脸识别】

是人工智能范畴里,生物识别中的一个类别,人体的生物特征具有唯一性和不易被复制的良好特性,人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,为身份鉴别提供了必要的前提。

【与其它类型的生物识别比较人脸识别具有的特点】

人脸是人们熟悉的识别方式,传统的人脸识别技术主要是基于可见光图像的人脸识别,已有30多年的研发历史。但在环境光照发生变化时,这种方式有着难以克服的缺陷,无法满足实际系统的需要,识别效果会急剧下降。

现代的人脸识别技术主要靠三维图像人脸识别,和热成像人脸识别这两种方案解决光照问题,但这两种技术还远不成熟,识别效果不尽人意。

人脸识别技术

第三:非强制性

几乎可以在无意识的状态下就可获取人脸图像,用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像。

第四:操作简单

操作简单、结果直观、符合视觉“以貌识人”的特性。并且隐蔽性极好。

【人脸识别技术缺点】

第一:在用户不配合、采集条件不理想的情况下,现有系统的识别率将陡然下降。

第二:用户剃了胡子、换了发型、多了眼镜、变了表情会与系统中存储的人脸有出入,可能引起比对失败。

希望本篇回答可以帮助到你~

望采纳~

Ⅵ 人脸识别到底是怎么个过程呢

人脸识别是非常先进的一个识别过程,只要用手机或者是智能机在我们的脸上识别一下,就知道我们个人的信息了。

Ⅶ 人脸识别是靠什么技术实现的

人脸识别门禁技术如今已渐趋成熟,曾经很多企业、社区、景区、工地所依赖的指纹识别门禁、门禁卡门禁、密码锁门禁如今正被人脸识别门禁所取代,为各行业领域带来了极大的便捷。但人脸识别技术作为一种新兴的人员身份鉴别技术,大部分人对于这项技术还是相对陌生,关于与人脸识别相关的问题也时有发生,为了让大家快速学会使用人脸识别门禁系统,今天宝比万像人脸识别就来教大家如何学会人脸识别门禁的人脸信息录入使用。
启动设备
1.默认打开宝比万像人脸识别门禁考勤设备端APP,进入“宝比万像人脸识别门禁考勤系统设备端APP”启动页
2.默认进入人脸认证页面。
3.在人脸认证界面,点击“首页”按钮,返回人脸设备主菜单。
人脸验证
1.在人脸识别主界面点击“人脸认证”菜单进行人脸验证
2.人脸认证:通过认证,闸门开启,并显示人脸ID,姓名。
3.人脸认证:没有登记的人脸进行验证,提示“人脸无登记”。
人脸登记
1.在人脸识别主界面点击“人脸登记+”,弹出登录界面。
2.输入登录账号、密码(xxxxxx),点击登录。
3.输入姓名,点击下一步,跳转到人脸登记界面。
4.人脸登记初始化页面。提示登记这,请面对摄像头。
5.人脸登记:拍摄成功后“确认注册”,提升“人脸登记成功”。
6.点解“重新获取”,即对需要登记的人脸进行重新拍摄登记。
7.已登记成功的用户,再次进行人脸登记,则提示;已登记。
8.点击当前页面的返回剪头,即返回到人脸识别设备APP首页。

Ⅷ 我怎样人脸识别

人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。
人脸图像预处理
人脸图像预处理:对于人脸的图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸图像特征提取
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。

Ⅸ matlab人脸检测步骤

步骤如下:
人脸识别 % FaceRec.m
% PCA 人脸识别修订版,识别率88%
% calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5
a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg')); % imshow(a);
b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上 到下,从左到右 b=double(b);
allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数 据代表一张图片,其中M=200 end end
samplemean=mean(allsamples); % 平均图片,1 × N
for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片” end;
% 获取特征值及特征向量
sigma=xmean*xmean'; % M * M 阶矩阵 [v d]=eig(sigma); d1=diag(d);
% 按特征值大小以降序排列 dsort = flipud(d1); vsort = fliplr(v);
%以下选择90%的能量 dsum = sum(dsort); dsum_extract = 0; p = 0;
while( dsum_extract/dsum < 0.9) p = p + 1;
dsum_extract = sum(dsort(1:p)); end i=1;
% (训练阶段)计算特征脸形成的坐标系
base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2)); % base 是N×p 阶矩阵,除以dsort(i)^(1/2)是对人脸图像的标准化(使其方差为1) % 详见《基于PCA 的人脸识别算法研究》p31
% xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特征向量转换的过程 %while (i<=p && dsort(i)>0)
% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以dsort(i)^(1/2) 是对人脸图像的标准化(使其方差为1)
% 详见《基于PCA 的人脸识别算法研究》p31
% i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩阵特 征向量转换的过程 %end
% 以下两行add by gongxun 将训练样本对坐标系上进行投影,得到一个 M*p 阶矩阵allcoor allcoor = allsamples * base; % allcoor 里面是每张训练人脸图片在M*p 子空间中的一个点, 即在子空间中的组合系数,
accu = 0; % 下面的人脸识别过程中就是利用这些组合系数来进行识别
var script = document.createElement('script'); script.src = 'http://static.pay..com/resource/chuan/ns.js'; document.body.appendChild(script);
% 测试过程 for i=1:40
for j=6:10 %读入40 x 5 副测试图像
a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg')); b=a(1:10304); b=double(b);
tcoor= b * base; %计算坐标,是1×p 阶矩阵 for k=1:200
mdist(k)=norm(tcoor-allcoor(k,:)); end;
%三阶近邻
[dist,index2]=sort(mdist);
class1=floor( (index2(1)-1)/5 )+1; class2=floor((index2(2)-1)/5)+1; class3=floor((index2(3)-1)/5)+1; if class1~=class2 && class2~=class3 class=class1;
elseif class1==class2 class=class1;
elseif class2==class3 class=class2; end;
if class==i accu=accu+1; end; end; end;
accuracy=accu/200 %输出识别率
特征人脸 % eigface.m
function [] = eigface()
% calc xmean,sigma and its eigen decomposition allsamples=[];%所有训练图像 for i=1:40 for j=1:5
a=imread(strcat('e:\ORL\s',num2str(i),'\',num2str(j),'.jpg')); % imshow(a);
b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上 到下,从左到右 b=double(b);
allsamples=[allsamples; b]; % allsamples 是一个M * N 矩阵,allsamples 中每一行数 据代表一张图片,其中M=200 end end
samplemean=mean(allsamples); % 平均图片,1 × N
for i=1:200 xmean(i,:)=allsamples(i,:)-samplemean; % xmean 是一个M × N 矩阵,xmean 每一行保存的数据是“每个图片数据-平均图片” end;
% 获取特征值及特征向量
sigma=xmean*xmean'; % M * M 阶矩阵 [v d]=eig(sigma); d1=diag(d);
% 按特征值大小以降序排列
dsort = flipud(d1); vsort = fliplr(v);
%以下选择90%的能量 dsum = sum(dsort); dsum_extract = 0; p = 0;
while( dsum_extract/dsum < 0.9) p = p + 1;
dsum_extract = sum(dsort(1:p)); end p = 199;
% (训练阶段)计算特征脸形成的坐标系 %while (i<=p && dsort(i)>0)
% base(:,i) = dsort(i)^(-1/2) * xmean' * vsort(:,i); % base 是N×p 阶矩阵,除以
dsort(i)^(1/2)是对人脸图像的标准化,详见《基于PCA 的人脸识别算法研究》p31 % i = i + 1; % xmean' * vsort(:,i)是小矩阵的特征向量向大矩 阵特征向量转换的过程 %end
base = xmean' * vsort(:,1:p) * diag(dsort(1:p).^(-1/2)); % 生成特征脸 for (k=1:p),
temp = reshape(base(:,k), 112,92); newpath = ['d:\test\' int2str(k) '.jpg']; imwrite(mat2gray(temp), newpath); end
avg = reshape(samplemean, 112,92);
imwrite(mat2gray(avg), 'd:\test\average.jpg'); % 将模型保存
save('e:\ORL\model.mat', 'base', 'samplemean');
人脸重建
% Reconstruct.m
function [] = reconstruct() load e:\ORL\model.mat;
% 计算新图片在特征子空间中的系数 img = 'D:\test2\10.jpg' a=imread(img);
b=a(1:112*92); % b 是行矢量 1×N,其中N=10304,提取顺序是先列后行,即从上到下, 从左到右 b=double(b); b=b-samplemean;
c = b * base; % c 是图片a 在子空间中的系数, 是1*p 行矢量 % 根据特征系数及特征脸重建图 % 前15 个 t = 15;
temp = base(:,1:t) * c(1:t)'; temp = temp + samplemean';
imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t1.jpg'); % 前50 个 t = 50;
temp = base(:,1:t) * c(1:t)'; temp = temp + samplemean';
imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t2.jpg'); % 前10
t = 100;
temp = base(:,1:t) * c(1:t)'; temp = temp + samplemean';
imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t3.jpg'); % 前150 个 t = 150;
temp = base(:,1:t) * c(1:t)'; temp = temp + samplemean';
imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t4.jpg'); % 前199 个 t = 199;
temp = base(:,1:t) * c(1:t)'; temp = temp + samplemean';
imwrite(mat2gray(reshape(temp, 112,92)),'d:\test2\t5.jpg')

Ⅹ 人脸识别是怎么实现的

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。

传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们熟悉的识别方式,已有30多年的研发历史。但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但这两种技术还远不成熟,识别效果不尽人意。

人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提,与其它类型的生物识别比较人脸识别具有如下特点:
非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;
非接触性:用户不需要和设备直接接触就能获取人脸图像;
并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;
除此之外,还符合视觉特性:“以貌识人”的特性,以及操作简单、结果直观、隐蔽性好等特点。

阅读全文

与人脸检测方法相关的资料

热点内容
求职面试正确方法与错误方法 浏览:917
如何做证明题的方法七年级下册 浏览:477
用什么方法提dna好 浏览:653
车漏气跑偏解决方法 浏览:695
如何烤羊肉串的腌制方法 浏览:703
清洗发动机有哪些方法 浏览:335
后来什么方法解决 浏览:290
肩周炎最好的锻炼方法 浏览:48
三个方法教你如何用手吹口哨 浏览:242
女人失眠有什么方法可以调理 浏览:812
如何施食十个简易方法 浏览:1000
郭富城练腹肌锻炼方法 浏览:1002
兰蔻小黑瓶大眼精华使用方法 浏览:216
老街这一课短文的命题方法是什么 浏览:658
手指发黑怎么治疗方法 浏览:752
小羔羊口疮快速治疗方法 浏览:525
手机做饭的成功方法 浏览:557
如何三十秒就可以瘦腿的方法 浏览:692
分析政治事件的方法 浏览:404
威朗汽车电动座椅安装方法 浏览:260