导航:首页 > 解决方法 > 整式乘法解决问题方法

整式乘法解决问题方法

发布时间:2022-05-31 17:43:36

‘壹’ 整式的乘法公式讲解

(a+b)(a+b)=(a+b)^2=a^2+2ab+b^2 或者 (a-b) (a-b)=(a-b)^2=a^2-2ab+b^2
归纳 这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。
我们通常表示为:
(a±b)^2=a^2±2ab+b^2
注:
通常a,b是表示一个整体的代数式,不一定是数,例如:[(3x-y)-(2x+2y)][(3x-y)+(2x+2y)]=5x^2+6xy+y^2
[编辑本段]常见错误
完全平方公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误; (错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难于掌握。
[编辑本段]学习方法及例题
一、理解公式左右边特征 (一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性; (二)学会用文字概述公式的含义: 两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 与都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. (三)这两个公式的结构特征是: 1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍; 2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内); 3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式. (四)两个公式的统一: 因为 所以两个公式实际上可以看成一个公式:两数和的完全平方公式。这样可以既可以防止公式的混淆又杜绝了运算符号的出错。 二、把握运用公式四步曲: 1、“察”:计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用相应乘法法则进行计算. 2、“导”:正确地选用完全平方公式,关键是确定式子中a、b分别表示什么数或式. 3、“算”:注意每步的运算依据,即各个环节的算理。 4、“验”:完成运算后学会检验,既回过头来再反思每步的计算依据和符号等各方面是否正确无误,又可通过多项式的乘法法则进行验算,确保万无一失。 三、掌握运用公式常规四变 (一)、变符号: 例1:运用完全平方公式计算: (1) (2) 分析:本例改变了公式中a、b的符号,处理方法之一:把两式分别变形为再用公式计算(反思得:);方法二:把两式分别变形为:后直接用公式计算;方法三:把两式分别变形为:后直接用公式计算(此法是在把两个公式统一的基础上进行,易于理解不会混淆); (二)、变项数: 例2:计算: 分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,可先变形为或或者,再进行计算. (三)、变结构 例3:运用公式计算: (1)(x+y)·(2x+2y); (2)(a+b)·(-a-b); (3)(a-b)·(b-a) 分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即 (1)(x+y)·(2x+2y)=2(x+y)?; (2)(a+b)·(-a-b)=-(a+b)?; (3)(a-b)·(b-a)=-(a-b)? (四)、简便运算 例4:计算:(1)9992(2)100.12 分析:本例中的999接近1000,100.1接近100,故可化成两个数的和或差,从而运用完全平方公式计算。即:(1)。 四、学会公式运用中三拓展 1、公式的混用 例5:计算: (l)(x+y+z)(x+y-z) (2)(2x-y+3z)(y-3z-2x) 分析:此例是三项式乘以三项式,特点是:有些项相同,另外的项互为相反数。故可考虑把相同的项和互为相反数的项分别结合构造成平方差公式计算后,再运用完全平方公式等计算。即:(1)(x+y+z)(x+y-z)=[(x+y)+z][(x+y)-z]=… (2)(2x-y+3z)(y-3z+2x)=[2x-(y-3z)][(2x+(y-3z)]=…2、公式的变形: 熟悉完全平方公式的变形式,是相关整体代换求知值的关键。 例6:已知实数a、b满足(a+b)2=10,ab=1。求下列各式的值: (1)a2+b2;(2)(a-b)2 分析:此例是典型的整式求值问题,若按常规思维把a、b的值分别求出来,非常困难;仔细探究易把这些条件同完全平方公式结合起来,运用完全平方公式的变形式很容易找到解决问题的途径。即:(1)a2+b2=(a+b)2-2ab=… (2)(a-b)2=(a+b)2-4ab=… 3、公式的逆用: 例7:计算: 分析:本题若直接运用乘法公式和法则较繁琐,仔细分析可发现其结构恰似完全平方公式的右边,不妨把公式倒过来用可得:==4

(a+b)(a-b)=a^2-b^2
两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式。
[编辑本段]说明
当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差,即a^-b^ =(a+b)(a-b)
两数和于这两数差的基,等于它们的平方差。
[逆推导平方差公式]
a^2-b^2
=a^2-b^2+(ab-ab)
=(a^2-ab)+(ab-b^2)
=a(a-b)+b(a-b)
=(a+b)(a-b)
[编辑本段]公式运用
[解方程]
x×x-y×y=1991
[思路分析]
利用平方差公式求解
[解题过程]
x^2-y^2=1991
(x+y)(x-y)=1991
因为1991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同时也可以是负数
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85

供参考!江苏吴云超祝你学习进步

‘贰’ 整式的乘法好哪些

整式的乘法有以下三种:

1、同底数幂的乘法:a的m次方乘以a的n次方=a的m+n次方(底数不变,指数相加)。

2、积的乘方:(ab)的m次方=a的m次方乘以b的m次方(积中各因式分别乘方,再把所得的幂相乘)。幂的乘方:(a的m次方)的n次幂=a的mn次方(底数不变,指数相乘)。

3、幂的乘方:(a的m次方)的n次幂=a的mn次方(底数不变,指数相乘)。

整式的乘法与分解因式为相反变形。

1、代数表达式是有理公式的一部分,可以包含加减乘除四种运算,但在代数表达式中,除数不能包含字母。单项式和多项式统称为代数表达式。分母中有字母的公式不能是多项式或单项式。所有的单项式和多项式都是代数表达式。

2、乘法是把相同数字相加的捷径。结果叫做乘积,“x”是乘法符号。从哲学的角度看,乘法是加法量变引起质变的结果。乘法也可以看作是计算排列在一个矩形(整数)中的对象,或者求给定边长的矩形的面积。

3、把一个多项式变成几个最简单代数表达式的乘积。这种变形称为该多项式的因式分解(也称为因式分解)。它是中学数学中最重要的恒等式变形之一。它广泛应用于初等数学,是我们解决许多数学问题的有力工具。

‘叁’ 整式乘法

【本讲教育信息】
一. 教学内容:
整式的乘法

二. 学习重难点:
整式的乘法的运算法则即应用是本节课的重难点

三. 知识要点讲解:
【知识回顾】
1、幂的运算法则:
①、同底数的幂相乘,底数不变,指数相加。
即: (m、n为正整数)
②、幂的乘方,底数不变,指数相乘。
即: (m、n为正整数)
③、积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
即: (n为正整数)
④、同底数的幂相除,底数不变,指数相减。
(m>n,m、n为正整数)
2、乘法的运算律:
①、乘法的结合律:(a×b)×c=a×(b×c)
②、乘法的分配律:a(b+c)=ab+ac

【新课讲解】
问题1、为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画。受他的启发,京京用两张同样大小的纸,精心制作了两幅画,如图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白.

(1)第一幅画的画面面积是 __ _ _ 米2;
(2)第二幅画的画面面积是 ____ 米2.
思考:式子x·(mx) 与 (mx)·(x-x-x)= (mx)·(x)如何计算呢?
探讨:x·(mx) (mx)·(x)
= m·(x·x)——乘法交换律、结合律 = (m)(x·x)——乘法交换律、结合律
= mx2——同底数幂乘法运算性质 = mx2——同底数幂乘法运算性质
1、单项式乘以单项式法则:
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
思考:你会计算3xy(x2y-2xy+y2),并说明每一步的理由.
解:3xy (x2y-2xy+y2)
= 3xy·(x2y)+3xy·(-2xy)+3xy·y2——乘法分配律
= 3x3y2-6x2y2+3xy3——单项式乘法的运算法则
2、单项式乘以多项式的运算法则
单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.

‘肆’ 整式乘除法运算法则

整式乘法法则:单项式与单项式相乘,把它们的___系数、相同字母__分别相乘,对于只在一个单项式里含有的__字母__,则连同它的__指数__作为积的__一个因式__;单项式与多项式相乘,就是用_多项式_去乘_多项式_,再把所得的_积_相加;多项式与多项式相乘,先用_一个多项式的每一项乘另一个多项式的每一项_,再把所得的__积___相加.
整式除法法则:单项式相除,把_系数、相同字母__分别相除作为_商的一个因式_,对于只在_被除式里含有的字母_,则连同它的_指数_作为_商的一个因式_;多项式除以单项式,先把_这个多项式的每一项_除以_这个单项式_,再把所得的__商相加__.
因式分解与__整式乘法_是相反方向的变形.

‘伍’ 关于整式乘法

分解因式与整式乘法互逆。单项式和多项式都统称为整式。整式是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解。乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。公式中的每一个字母,一般可以表示数字,单项式,多项式,有的还可以推广到分式,根式。 1、单项式乘以单项式法则:单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式. 注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。 2、单项式乘以多项式的运算法则单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加. 3、多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.

‘陆’ 什么叫整式乘法

1、整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。

2、乘法法则

单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

3、整数指数律

(1)同底数幂的乘法

底数是相同的幂即为同底数幂;同底数幂相乘,底数不变,指数相加。

(2)幂的乘方

幂的乘方,底数不变,指数相乘。

(6)整式乘法解决问题方法扩展阅读:

乘法公式

1、平方差公式:(a+b)(a-b)=a^2-b^2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差。

2、完全平方公式:

(a+b)^2=a^2+2ab+b^2

(a-b)^2=a^2-2ab+b^2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍。

‘柒’ 整式乘法公式是什么

整式乘法公式:a*b=c。

乘法运算时,数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;

1、十位数是1的两位数相乘方法:乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满 十前一。

2、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添 上1。

3、十位相同个位不同的两位数相乘方法:被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上。

乘法的计算法则:

1、多位数乘法法则整数乘法低位起,几位数乘法几次积。

个位数乘得若干一,积的末位对个位。

十位数乘得若干十,积的末位对十位。

百位数乘得若干百,积的末位对百位计算准确对好位,几次乘积加一起。

2、因数末尾有0的乘法法则因数末尾若有0,写在后面先不乘,乘完积补上0,有几个0写几个0。

‘捌’ 整式的乘法怎么

解如下图所示

‘玖’ 整式乘法运算的几种常用技巧

在整式的计算、化简、求值中,若能正确、灵活地运用法则、公式,并且掌握某些运算技巧,就能使代数运算变得十分简洁.下面归纳、总结,供同学们学习时参考. .适当变形,运用公利侧考分析计算:(‘一5)(l一勃一1).. (‘一制.:直接计算,要计算10个减法运算、10个乘侧夕化简:(x+即-32)(x一勿+3z).分析:两个含有三项的多项式相乘,需相乘9次,再合并同类项,这是一项多么麻烦的计算!现在我们来观察因式(x+即一3:)、(x一即十玉),不难发现即一3z和~2少+玉互为相反数,于是想到将x一寿+3z变形为二-(即一3z),从而便可以运用平方差公式来计算.解:原式二〔x+(即一3z)〕〔x一(即一3z)”=x2一(即一32)2 =x七(分一12yz+卯) =x Zee州+l如一922.侧2计算:(2+x)(22+l)(24+1)(28+一)(2,6+1).分析:此题若是直接计算,指数大,太繁了!从所求式子看,是5个两数和的积,要是能出现相对应的两数差就好了,以便运用平方差公式.由(2+l)这个因数启发我们:将所求式子乘1,即将所求式子乘以(2一l),就会连续出现

‘拾’ 整式的乘法公式是什么

乘法的计算法则:数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;

1、十位数是1的两位数相乘方法:乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满 十前一。

2、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添 上1。

3、十位相同个位不同的两位数相乘方法:被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上。



乘法的计算法则:

(1)数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;

(2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0)

阅读全文

与整式乘法解决问题方法相关的资料

热点内容
健身甩筒锻炼方法 浏览:942
集成吊顶灯安装方法图 浏览:475
肥胖体脂率测量方法 浏览:15
自己用什么方法去眼袋 浏览:650
常用的几种野外求救方法 浏览:443
电动料理机的安装方法视频 浏览:573
如何更改资费方法 浏览:880
水分的计算方法 浏览:884
里外双锁芯安装方法 浏览:263
甜甜圈发使用方法 浏览:155
500卡路里锻炼方法 浏览:894
怎么让孩子开窍的方法 浏览:618
性瘾症的治疗方法 浏览:377
鸡饲料钓草鱼方法视频 浏览:244
低危型房颤的治疗方法 浏览:808
欧姆龙耳温计使用方法 浏览:550
数罪并罚后附加刑的计算方法 浏览:828
水电工安装地线走线方法 浏览:574
冬天果树育苗基质最佳方法 浏览:414
灵芝孢子粉食用方法和什么同吃 浏览:621