㈠ 离子色谱测定有机酸
分离模式:反相液相色谱柱系 统:Hypersil100 C18,(100mm ×4.6 mm),流 动 相:甲 醇/水0.2mol·L-1磷酸(10/90)分离条件:流速0.5mL·min-1检测器:UV210nm说明:有机酸分离应该在低于其pKa的pH条件下进行,此时羧基的解离被抑制,羧酸分子在反相C18有较理想的保留值;在pKa以上的pH有机酸保留值迅速下降,如果仍然能够分开,也可以使用,但应避免在pKa附近的pH条件分离,此pH下,保留值重复性较差。
分离模式:离子交换色谱柱系统:UuniveralCation 阳离子柱子(100mm×4.6mm),流动相:5mmol·L-1HCl 分离条件:等度检测器:电导检测
㈡ 离子色谱仪 用来测什么
离子色谱主要用于环境样品的分析,包括地面水、饮用水、雨水、生活污水和工业废水、酸沉降物和大气颗粒物等样品中的阴、阳离子,与微电子工业有关的水和试剂中痕量杂质的分析。
离子色谱是高效液相色谱的一种,故又称高效离子色谱(HPIC)或现代离子色谱,其有别于传统离子交换色谱柱色谱的主要是树脂具有很高的交联度和较低的交换容量,进样体积很小,用柱塞泵输送淋洗液通常对淋出液进行在线自动连续电导检测。
(2)用离子色谱检测方法扩展阅读
离子色谱仪的工作过程
输液泵将流动相以稳定的流速( 或压力) 输送至分析体系,,在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。
即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低。然后将流出物导入电导检测池。检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵。因此仪器的结构相对要简单得多, 价格也要便宜很多。
㈢ 离子色谱的检测方法主要有哪些其使用范围分别是什么
你的头盖骨和你小时候的头盖骨比起来有何特点。我想说的是,你这个问题根本摸不着边际,所以我也没法回答你,建议你问问题问题目的性强一点,不然谁也回答不了你
㈣ 离子色谱法测定锂、钠、钾、钙、镁、铵
方法提要
水样中阳离子Li+、Na+、NH+4、K+、Mg2+、Ca2+,随盐酸淋洗液进入阳离子分离柱,根据离子交换树脂对各阳离子的不同亲和程度进行分离。经分离后的各组分流经抑制系统,将强电解质的淋洗液转换为弱电解溶液,降低了背景电导。流经电导检测器系统,测量各离子组分的电导率。以相对保留时间和色谱峰(面积)定性和定量。
本法用电导检测器,在3~300μS测量量程,可达到线性范围分别为:Li+0.02~27mg/L;Na+0.06~90mg/L;K+0.16~225mg/L。10~300μS量程为:Mg2+1.2~35mg/L;Ca2+1.7~360mg/L。
仪器和装置
离子色谱仪(电导检测器)。
阳离子分离柱/保护柱(IopacCS12,CS14或同类产品)。
抑制器系统(抑制柱、膜抑制器或自动再生电解抑制器)。
滤膜(0.2μm)和过滤器。
试剂
本法需用电导率小于1μS/cm的纯水配制标准溶液和淋洗液。
淋洗液 盐酸c(HCl)=20mmol/L。
再生液 四甲基氢氧化铵c(CH3)4NOH=100mmol/L称取36.5g四甲基氢氧化铵,置于100mL容量瓶中,加水至刻度。
钠(Na+) 标准储备溶液ρ(Na+)=1.00mg/mL称取0.5084g经500℃灼烧1h,并在干燥器中冷却0.5h的NaCl,置于200mL容量瓶中,加入水溶解后稀释至刻度,摇匀。
钾(K+) 标准储备溶液ρ(K+)=1.00mg/mL称取0.4457g经500℃灼烧1h并在干燥器中冷却0.5h的K2SO4,置于200mL容量瓶中,加入水溶解后稀释至刻度,摇匀。
锂(Li+) 标准储备溶液ρ(Li+)=1.00mg/mL称取1.0648gLi2CO3置于200mL容量瓶中,加少量水湿润,逐滴加入(1+1)HCl,使碳酸锂完全溶解,再过量2滴。加入水至刻度,摇匀。
图81.65 种阳离子的色谱图
钙(Ca2+)标准储备溶液ρ(Ca2+)=1.00mg/mL称取0.4994g经105℃干燥的CaCO3置于200mL烧杯中,加入少量纯水,逐渐加入(1+1)HCl,待完全溶解后,再加入过量(1+1)HCl。煮沸驱除二氧化碳,定量地转移至200mL容量瓶中,加入纯水溶解后稀释至刻度。
镁(Mg2+)标准储备溶液ρ(Mg2+)=1.00mg/mL称取0.7836g氯化镁(MgCl2)置于200mL容量瓶中,加入纯水溶解后稀释至刻度。
阳离子混合标准溶液根据选定的测量范围,分别吸取适量各组分的标准储备溶液,定容至一定体积,以mg/L表示各组分浓度。
分析步骤
开启离子色谱仪,调节淋洗液和再生液流速,使仪器达到平衡,并指示稳定的基线。
校准。根据所选择的量程,将阳离子混合标准溶液和两次等比稀释的三种不同浓度的阳离子混合标准溶液依次进样。记录峰高或峰面积,绘制校准曲线。
将水样经0.2μm滤膜过滤注入进样系统,记录色谱峰高或峰面积。各种阳离子的质量浓度(mg/L)在标准曲线上直接查得。
各种阳离子的测定范围(mg/L)见表81.8及色谱图81.6。
表81.8 各种阳离子在不同量程的参考测定浓度
续表
㈤ 离子色谱法测定水中氨氮含量的标准检验方法
请参考这篇文献《离子色谱法测定水中氨氮含量》
【题名】离子色谱法测定水中氨氮含量
【作者】杨文英 王艳春
【机构】北京市通州区疾病预防控制中心,北京101100
【刊名】《中国卫生检验杂志》 2005年第15卷第11期,1338-1339页
【关键词】离子色谱法 氨氮 水
【文摘】目的:用离子色谱法测定水中的氨氮含量。方法:采用DX-120型离子色谱仪,选用IonPac CS12A分离柱,淋洗液为20mmol/L甲烷磺酸,流速为0.60ml/min,电导检测器。结果:氨氮浓度在0.04—2.0mg/L范围内具有较好的线性关系,相关系数为0.9997,检出限为0.010mg/L。测定方法具有较好的精密度和准确度,相对标准偏差为0.82%,加标回收率在 95.2%-107.0%之间。在Na^+离子浓度不影响氨氮测定的条件下,与纳氏试剂分光光度法做对比实验,两种方法测定结果无显着性差异。结论:该方法操作简便、快速、无污染,可用于水中氨氮含量的分析。
建议您可以到行业内专业的网站进行交流学习!
分析测试网络网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址网络搜下就有。
㈥ 离子色谱方法检出限怎么做
检出限:是评价一个分析方法及测试仪器性能的重要指标,
是指某一特定分析方法,在给定的显着性水平内,可以定性地从样品中检出待测物质的最小浓度或最小量。所谓“检出”是指定性检出,
在检出限附近不能进行准确的定量。检出限可分为测量方法检出限和仪器检出限。
仪器检出限:指分析仪器能够检测的被分析物的最低量或最低浓度。仪器检出限一般用于不同仪器的性能比较。一般通过多次空白试验,求得其背景响应的标准差,将三倍空白标准差(即3δ)作为检测限的估计值。也可用已知浓度的样品与空白试验对照,记录测得的被测样品信号强度S与噪音(或背景信号)强度N,以能达到S/N=2或S/N=3时的样品最低浓度为LOD(Limit
of
Detection)。如用非仪器分析方法时,通过已知浓度的样品分析来确定可检出的最低水平作为检出限。表示方法常为:1.最低检出浓度:满足最低检出限要求时,进样供试品溶液的浓度,常见单位:mg/mL,ng/mL,mol/L等。2,最低检出量:最低检出量=最低检出浓度×进样量,常见单位:ng,pg,fg等。
方法检出限:方法检出限不仅与仪器的噪音有关,还取决于样品测定的整个环节,如取样量,提取分离以及测定条件的优化等,实际工作中应注明具体实验条件。例如:检测某化合物XY时,方法中规定取样100mg,经提取处理后定容为10ml分析,此时方法的检出限为1μg/g。若改变方法使取样量增加至1g,则方法检出限为0.1μg/g。若改变方法使取样量增加至1g且经提取处理后定容为1ml,则方法检出限为0.01μg/g。
检出限主要取决于3个方面:
1.分析方法的选择性和专一性。2。分析方法的灵敏度。3.分析方法的精密度。仪器检出限不考虑任何样品制备步骤的影响,一般以溶剂空白测定检出限,因此其值总是比方法检出限低。
一般以空白测量的3倍标准差为检出限,
10倍标准差为定量测定下限(LOD,Limit
of
Determination)。当测定结果不大于检出限时报告为未检出;当测定结果大于检出限且不大于定量测定下限时,报告为定性检出;当测定结果大于定量测定下限时,报告定量结果。
样品的定量结果应在标准曲线范围内,不准外推计算,外推结果没有经过方法学验证,无法确定其准确性。样品太浓应稀释,太稀则应浓缩,使之落在标准曲线范围内,故准确地说定量下限应指标准曲线的最低浓度点。
㈦ 怎样请问高手,用什么方法用离子色谱仪检测几十个ppm的氯根
首先你得知道硝酸根是没有沉淀,没有办法去除的,所以只能就一起进样,我不知道你用的国产还是进口的色谱柱,如果是国产的色谱柱的话,氟离子是对氯离子有一定影响。进口色谱柱的话,一般不会有这个影响。还有你要测得几十ppm的氯,但是硝酸根含量高所以你要选好灵敏度和量程。硝酸根满屏的话,你可以不考虑它,就这样,有离子色谱其他问题,找我
㈧ 离子色谱的基本原理
基本原理:
离子色谱的分离机理主要是离子交换,有3种分离方式,它们是高效离子交换色谱(HPIC)、离子排斥色谱 (HPIEC)和离子对色谱 (MPIC)。用于3种分离方式的柱填料的树脂骨架基本都是苯乙烯-二乙烯基苯的共聚物,但树脂的离子交换功能基和容量各不相同。HPIC用低容量的离子交换树脂,HPIEC用高容量的树脂,MPIC用不含离子交换基团的多孔树脂。3种分离方式各基于不同分离机理。HPIC的分离机理主要是离子交换,HPIEC主要为离子排斥,而MPIC则是主要基于吸附和离子对的形成。
离子交换色谱
高效离子交换色谱,应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,这在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架,在苯环上引入磺酸基,形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构,以便于快速达到交换平衡,离子交换树脂耐酸碱可在任何pH范围内使用,易再生处理、使用寿命长,缺点是机械强度差、易溶易胀、受有机物污染。
硅质键合离子交换剂以硅胶为载体,将有离子交换基的有机硅烷与基表面的硅醇基反应,形成化学键合型离子交换剂,其特点是柱效高、交换平衡快、机械强度高,缺点是不耐酸碱、只宜在pH2-8范围内使用。
离子排斥色谱
它主要根据Donnon膜排斥效应,电离组分受排斥不被保留,而弱酸则有一定保留的原理,制成离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根碳酸根和硫酸根有机酸等。它主要采用高交换容量的磺化H型阳离子交换树脂为填料以稀盐酸为淋洗液。
离子对色谱
离子对色谱的固定相为疏水型的中性填料,可用苯乙烯二乙烯苯树脂或十八烷基硅胶(ODS),也有用C8硅胶或CN,固定相流动相由含有所谓对离子试剂和含适量有机溶剂的水溶液组成,对离子是指其电荷与待测离子相反,并能与之生成疏水性离子,对化合物的表面活性剂离子,用于阴离子分离的对离子是烷基胺类如氢氧化四丁基铵氢氧化十六烷基三甲烷等,用于阳离子分离的对离子是烷基磺酸类,如己烷磺酸钠,庚烷磺酸钠等对离子的非极性端亲脂极性端亲水,其CH2键越长则离子对化合物在固定相的保留越强,在极性流动相中,往往加入一些有机溶剂,以加快淋洗速度,此法主要用于疏水性阴离子以及金属络合物的分离,至于其分离机理则有3种不同的假说,反相离子对分配离子交换以及离子相互作用。
㈨ 高效离子色谱法测定氯溴
方法提要
试样用碳酸钠-氧化锌混合熔剂烧结,用水浸取,用氢型阳离子交换树脂静态交换分离大量基体(阳离子)后,将试液注入离子色谱仪,在碳酸氢钠-碳酸钠淋洗液携带下,流入阴离子分离柱(HPIC-AG3+HPIC-AS3),经洗提与交换使氯离子与其他阴离子分离,然后流经阴离子抑制器,以降低淋洗液的背景电导,再流经电导检测器,测定氯离子电导率。在硝酸钠淋洗液携带下,流入阴离子分离柱(HPIC-AG5+HPIC-AS5),经洗提与交换使溴离子与其他阴离子分离,然后流经电化学检测器,测定溴离子在银工作电极上发生氧化反应而产生的电流值。据此测得氯离子和溴离子浓度。
方法适用于水系沉积物及土壤中氯、溴的测定。
检出限(3s):10μg/g氯,0.3μg/g溴。
测定范围:30~20000μg/g氯,0.9~600μg/g溴。
仪器及装置
DIONEX-2020i离子色谱仪。
DIONEX分离柱HPIC-AG3(4mm×50mm),HPIC-AS3(4mm×250mm);HPIC-AG5(4mm×50mm),HPIC-AS5(4mm×250mm)。
抑制器DIONEXASRS-ULTRA4-mm。
电导检测器。
安培检测器。
银工作电极。
记录器量程1~10mV。
试剂
无水乙醇。
碳酸钠-氧化锌混合熔剂碳酸钠(优级纯)和氧化锌(优级纯)按(3+2)充分混匀。硫酸。
硫酸溶液Ⅰc(1/2H2SO4)=2mol/L移取42mLH2SO4缓慢地加入700mL水中,搅匀。
硫酸溶液Ⅱc(1/2H2SO4)=0.025mol/L分取12.50mL的硫酸溶液Ⅰ置于1000mL水中,搅匀。
碳酸氢钠-碳酸钠溶液c(NaHCO3)-c(1/2Na2CO3)=0.0028mol/L-0.0044mol/L称取0.2352gNaHCO3(优级纯)和0.2332gNaCO3(优级纯)溶于1000mL水中,用时配制。
硝酸钠溶液c(NaNO3)=0.015mol/L称取1.2750gNaNO3[含Ag<100ng]溶于1000mL水中,用时配制。
氯标准储备溶液ρ(Cl-)=1.00mg/mL称取1.6485g已在500℃灼烧1h的优级纯氯化钠,置于250mL烧杯中,加水溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
氯标准溶液ρ(Cl-)=5.00μg/mL用水逐级稀释氯标准储备溶液配制。
溴标准储备溶液ρ(Br-)=100μg/mL称取0.1489g已于105℃干燥1h的优级纯溴化钾,置于250mL烧杯中,加水溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀。
溴标准溶液ρ(Br-)=1.00μg/mL用水逐级稀释溴标准储备溶液配制。
732型阳离子交换树脂(50~100目)先用水浸泡,清洗数遍,然后将树脂装入直径约1.5cm、长约30cm的玻璃柱中,顶端与梨形分液漏斗衔接。在分液漏斗中加入150mL硫酸溶液Ⅰ,以约1.5mL/min流速流经交换柱,流毕。用水以同样流速流经交换柱,直至流出液洗至无硫酸根。再生的树脂以真空抽滤至干,装瓶备用。收集已经用本法静态交换过的阳离子交换树脂,可用上述步骤再生后,继续使用。
校准曲线
分别移取0.00mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL氯标准溶液(5.00μg/mL),置于一组10mL烧杯中,分别加入5.00mL、4.50mL、4.00mL、3.00mL、2.00mL、1.00mL、0.00mL水至5mL,摇匀。
按表84.62仪器工作条件,将仪器调试好,待基线稳定后,用注射器吸取1.00mL氯校准系列溶液,注入仪器(进样阀),经分离柱再流经电导检测器,由记录器记录氯离子浓度的峰高值,绘制氯的校准曲线。
表84.62 测定氯的仪器工作条件
分别移取0.0mL、0.25mL、0.50mL、1.00mL、1.50mL、2.00mL、2.50mL、3.00mL溴标准溶液(1.00μg/mL),置于一组25mL容量瓶中,用水稀释至刻度,摇匀。
按表84.63仪器工作条件,将仪器调试好,待基线稳定后,用注射器吸取1.00mL溴校准系列溶液,注入仪器(进样阀),经分离柱再由安培检测器测定,由记录器记录溴离子浓度的峰高值,绘制溴的校准曲线。
表84.63 测定溴的仪器工作条件
分析步骤
依据各元素的含量,称取0.1~0.5g(精确至0.0001g)试样(粒径小于0.075mm,在60℃干燥2h,置干燥器中备用)置于预先盛有1.5gNa2CO3-ZnO混合熔剂的磁坩埚中,搅匀后,再均匀覆盖1.5g混合熔剂,置于低温高温炉中,自低温升至800℃,保持0.5h。取出冷却,将熔块倒入100mL烧杯中,用热水洗净坩埚,加20mL水及几滴无水乙醇,煮沸,冷却,将溶液连同沉淀一起移入50mL比色管中,用水稀释至刻度,摇匀后放置澄清。
吸取5.00mL清液置于50mL干烧杯中,加5g732型阳离子交换树脂,静态交换2h,在静态交换过程中须摇动2~3次。
按氯校准曲线步骤操作,用注射器吸取1.00mL阳离子交换树脂静态交换后的清液,测得氯量。
按溴校准曲线步骤操作,用注射器吸取1.00mL阳离子交换树脂静态交换后的清液,测得溴量。
氯和溴含量的计算参见式(84.11)。
注意事项
每测5个试液后,应检查校准曲线是否发生偏倚,以监控仪器的稳定性,提高测定准确性。