导航:首页 > 解决方法 > 奥数解决方法有哪些

奥数解决方法有哪些

发布时间:2022-05-24 23:28:55

① 做奥数题时的方法

其实想要学好奥数,首先你得对数学感兴趣,对数字得敏感!一般数学分为几大块:概率、集合、几何(包括立体几何和平面几何)、函数、不等式、向量、数列等等,这里面又有一条贯穿全部的线就是函数,几乎所有的数学知识和函数的有关。当然各个方向不一样,学习的方法就不一样,但总的来说都是要多做题,但是做题的目的不一样,有的靠做题熟练背记公式(像概率、集合),有的靠做题积累解题的方法和思想(像不等式、数列)。总之多做题,多积累方法,学会融汇贯通。

你是高中生吧?!奥数还是有捷径的,就是用高等方法来解决初等问题,中学的奥数基本都是初等问题,高等问题较少,所以你可以自学一点大学的高等数学,上册基本能看懂,下册有点困难,不过上册就够了,里面有很多经典公式定理,解决初等问题很简单,乃至高考数学最后一道题很多都是高等数学里面的。
还有就是一些比较灵活的、不按常规套路而又和生活实际联系紧密的题,那个就得靠自己对待问题和解决问题的思维方式和灵感,也许一个很简单的问题就是想不出答案来。比如你说的:有三个袋子,装满了小球。上面分别贴着“红”、“白”、“混”的纸条,但是里面装的小球跟袋子上写的完全不一样。现在,只允许你在其中一只袋子里,摸一只球,你能立刻推断出其它袋子里球的颜色吗?
很明显这个题你要寻找它们的共性或者一个比较特殊的东西,那就是混的那个袋子,里面装的不是混的球,取一个,如果是白球,那么白袋里面是红球,红袋里面是混球;如果是红球,那么白袋里面是混球,红袋里面是白球。就这么简单,而且这道题很容易用枚举法,红、白、混袋挨个试。
祝你能学好奥数!望采纳!

② 奥数题的解题技巧有哪些

1、直推法

就是直接进行分析推理,有条件出发运用相关的知识直接对问题进行分析,进行推导之后计算出结果,最终做出正确的分析和判断。这是最基本、最常用、最重要的方法。

适用题型:计算类选择题一般都用这种方法,其它题也常用这种方法

2、反推法

反推法即反向推导或反向代入法。反推法是由选项(即选择题的各个选项)反推条件,与条件相矛盾的选项则排除,相吻合的则是正确选项,或者将某个或某几个选项依次代入题设条件进行验证分析,与题设条件相吻合的就是正确的选项。

3、反例法

如果某个选项是一个命题,要排除该选项或说明该命题是错误的,有时只要举一个反例即可。举反例通常是用一些常用的、比较简单但又能说明问题的例子。如果大家在平时复习或做题时适当注意积累一下与各个知识点相关的不同反例,则在考试中可能会派上用场。

4、特值法(特例法)

如果题目是一个带有普遍性的命题,则可以尝试采取一种或几种特殊情况、特殊值去验证哪些选项是正确的、哪些是错误的,或者哪些极有可能是正确的或错误的,从而做出正确的选择。

5、反证法

在选择题的4个选项中,若假设某个选项不正确(或正确)可以推出矛盾,则说明该选项是正确选项(或不正确选项)。选择先从哪个选项着手证明,须根据题目条件具体分析和判断,有时可能需要一些直觉。

6、数形结合

根据条件画出相应的几何图形,结合数学表达式和图形进行分析,从而做出正确的判断和选择。这种方法常用于与几何图形有关的选择题。

7、排除法

如果可以通过一种或几种方法排除5个选项中的4个,则剩下的那个当然就是正确的选项,或者先排除5个选项中的3个,然后再对其余的2个进行判断和选择。

③ 奥数应该怎么去解决了

小学的奥数其实用高年级的方法如方程式等均可去解。但奥数中还提供了诸如画线段图法,比对法等,只要多做,方法能够运用熟练了,自然也就容易解了。根据我孩子读奥数的经验,关键在于解题思路上,方法运用得当,题目就迎刃而解了。

④ 解决奥数题有什么诀窍

1.读懂题目 2.清楚是什么问题 3.判断自己用哪种方法解最好 4.在草稿纸上认真地打草稿,数字不要随意地写,以防看不清楚 5.考试时想了很多遍还不会做的,先放下,等其他题都做完检查完在想 6.做完要验算 ......

⑤ 解决奥数问题的基本与常用方法

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

⑥ 小学奥数有哪些解题方法

一、课内重视听讲,课后及时复习。 二、适当多做题,养成良好的解题习惯。 三、调整心态,正确对待考试 学好数学的方法其实跟读其他科目没太大差别,流程上可区分为六个步骤: 1. 预习 2. 专心听讲 3. 课后练习 4. 测验 5. 侦错、补强 6. 回想 以上讲的是如何学好数学 学好奥数 1、预习的方法 预习是上课前对即将要上的奥数内容进行阅读,了解其梗概,做到心中有数,以便于掌握听课的主动权。预习是独立学习的尝试,对学习内容是否正确理解,能籂搐焚诽莳赌锋涩福绩否把握其重点、关键,洞察到隐含的思想方法等,都能及时在听课中得到检验、加强或矫正,有利于提高学习能力和养成自学的习惯,所以它是奥数学习中的重要一环。 奥数具有很强的逻辑性和连贯性,新知识往往是建立在旧知识的基础上。因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。 预习的方法,除了回忆或温习学习新内容所需的旧知识外,还应该了解基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里,等等。预习时,一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课的效率。在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握。如果时间允许,可以多思考一些问题,钻研得深入一些,甚至可做做练习题或习题;时间不允许,可以少一些问题,留给听课去解决的问题就多一些,不必强求一律。 检验预习的效果如何从两个方面考虑:(1)、下一讲的基础知识是什么?(2)、下一讲还有哪一些内容有哪些问题,学会带着问题去听课。 2、听课的方法 听课是学习奥数的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率。所以听课是学好奥数的关键。 听课的方法,除在预习中明确任务,做到有针对性地解决符合自己的问题外,还要集中注意力,把自己思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习奥数思维的方法,如观察、比较、分析、综合、归纳、演绎、一般化、特殊化等,就是如何运用公式、定理,了解其中隐含着的思想方法。 听课,一定要做笔记!做笔记不是把老师的板书原样抄录一遍,而是把老师的讲课的思路记到例题的旁边,同时要记到脑子里。再者,上课的时候一定要积极思考,我们一定要有自己的思路,看看老师的思路和我们的思路有什么不同。最后,一定要看看老师是怎样写解题过程。有时老师让大家做课堂练习,一定要积极的作,并且把它当作考试。这样听课,效果才能保证。有的同学在听课的时候,要么是什么也不记,要么是全部抄录老师的板书,前者老师的重点思路时间长了就会忘记,后者听课的时候没有思考的时间。 3、复习的方法 复习就是把学过的奥数知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。对学习的内容务求弄懂,切实理解掌握。如果有的问题经过较长时间的思索,还得不到解决,则可与同学商讨或请老师解决。 4、作业的方法 奥数学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,所以它对于发现存在的问题,困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。
希望采纳

⑦ 做奥数题有什么技巧

注意习惯的养成

要养成好的学习习惯,首先,需要学生对这个问题有个正确的认识,有些家长往往错误地认为。只要是题目理解了,出点小错没关系。这样做的结果,往往助长了学生粗心大意之习气。而在奥数题中,一点小错,往往是致命的。

学生做题出错了,我们应把它做为一个好的教育学生的契机,引导学生找出错误原因并不断积累,是知识方面的,要牢记。是习惯方面的,要改正。相信久而久之,好的习惯必能养成。

重视题目每个环节

有些奥数题步骤很多,很多学生掌握了其中的某些环节,就认为没问题了,而恰恰是某些重要的环节没有去认真考虑,只知其然,不知其所以然。这势必造成解题时脱节,而有时正是这小小蚁穴,毁了千里之堤。因此一定要让学生养成严谨求实的习惯。家长可让学生做"小老师",抓时间让他们讲一讲所学内容,看其是不是能讲得头头是道。这对他们是一个锻炼,也是一种督促。

通过练习逐步形成技能

一堂课下来,有些较难的题目,学生往往刚刚理解。而要让其利用所学知识去解决实际问题,时机还不成熟。这就要求他们要把所学知识形成技能。有针对性的练习是解决这一问题的最佳方法。练习题切忌千篇一律,因为这样会造成学生死记硬背,方法单一。

在选题时,应既要注意坡度,又要兼顾广度;既要注意已有知识的练习,又要注重利用所学知识去解决实际问题;既要注意基础知识的积累,又要注重知识的深化与提高。同时,要掌握好度,不要因为选题过多而使学生产生逆反心理。

⑧ 小学生做奥数题方法

小朋友,大哥哥告诉你首先不要着急,学数学一定要有方法,不是多做题就能解决问题的,你要学会做总结,每次的题的类型你要好好归纳,不能每次遇到同样的问题你还不会,不但耽误时间还打击了你的积极性,奥数的技巧方法性很重要,它考查的不是你做题量,也不是你的运算能力,而是你对解题思路方法的辨析能力,能举一反三的能力。

哥哥教你个方法,我上学的时候初中奥林匹克物理竞赛指导老师曾经这样指导我,首先你要建立自己的自信心,并不是你平时的自信心,而是你在考试中的稳而不慌的心境,这就是平时在解题中锻炼出来的, 我先说怎样建立,我先给这个方法起个名字(看起来比较矛盾的名):

一、模式化技巧法,
奥数的出题时采用习惯的特殊重点题型考查,这样的技巧也形成一定的模式了,比较经典的方法,你首先找个典型题型,请教你的老师做题方法,你总结下,把解题模式学会了,自己找些比较相似的题型独立做,千万不要问别人,慢慢去体会,你做对一次,以后再遇到你肯定不慌,不慌有信心,就很快做出来了。

二、题型入座法,
就是你做题的时候,有很多类题型你一定要归纳好了,把每一类的题型都要认真分析出来,比如,有路程相遇问题,年,月,日的计算问题,百分率问题,等等,你首先看到题,就把它对号入座,比如说你看到一个推算具体日期的题,那么你马上要想到这类问题的解决方法

哥哥当时就是这么学的,还有些经验是你自己摸索出来的,你要学会总结
慢慢来,首先要练习做题不慌,那样才能提高你的成绩

哥哥祝你取得好成绩!

哥哥是学工科的,语文一直也不好,就不给你瞎指点了

⑨ 数字奥数的解决方法

二楼和三楼的答案是正确的,我在这里就不再写了。但我想谈一下做这种题目的方法。
1了解并理解基本概念,没有这个当地基,面对任何题目你都会不知如此下手。因此,一定要将其牢记在心。
2多做,要知道,任何一道奥数题都是经过出题人的千辛万苦才出来的,所以,现在出题越来越难,很多题型都被出过了,多做能帮你了解这些题型的特点,从而百战不殆。
3好书。书是最好的老师。无论如何,书永远是最好的工具,甚至比Internet更好,找本好书钻研下去,你会发现你的奥数水平会有一个质的飞跃。

⑩ 数学奥数题解决方法

一、数形结合的思想方法

数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。

例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

二、集合的思想方法

把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。

如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。

三、对应的思想方法

对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。

四、函数的思想方法

恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。

函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。

五、极限的思想方法

极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。

现行小学教材中有许多处注意了极限思想的渗透。 在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。

六、化归的思想方法

化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。

如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

七、归纳的思想方法

在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。

如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。

八、符号化的思想方法

数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国着名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。

人教版教材从一年级就开始用“□”或“( )”代替变量 x ,让学生在其中填数。例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□ ○ □ = □ (个)。

符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此 ,教师在教学中要注意学生的可接受性。

九、统计的思想方法

在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法

小学数学除渗透运用了竞赛数学网介绍的上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等(详见《拉分题赏析》)。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。

阅读全文

与奥数解决方法有哪些相关的资料

热点内容
启动器24v改12v最简单的方法 浏览:798
油脂检测方法和原理 浏览:112
5比重计的使用方法视频 浏览:51
用什么方法洗松紧带上的银笔线 浏览:101
用香皂洗澡的正确方法 浏览:784
治白斑病有哪些好方法 浏览:657
粉末活性炭颗粒度湿法检测方法 浏览:889
考试编排方法和技巧 浏览:317
白色结晶土蜂蜜鉴别方法 浏览:160
天然检测的方法 浏览:255
中效天井棉安装方法 浏览:910
讨论研究蓄积作用的意义和方法 浏览:314
血余炭的食用方法 浏览:256
牛蛙骨骼标本制作方法步骤 浏览:984
红铜火烧后用什么方法使其变硬啊 浏览:901
早些入睡的正确方法 浏览:640
电脑蓝屏了怎么办多种方法 浏览:187
皮筋安装方法 浏览:945
磁力表使用方法 浏览:806
如何计算下期和值的方法 浏览:167