导航:首页 > 解决方法 > 举例数学家解决数学问题的方法

举例数学家解决数学问题的方法

发布时间:2022-05-23 16:43:47

A. 数学家破解数学难题的故事有哪些

祖冲之究竟是用什么方法将π算到小数点后第七位,又是怎样找到既精确又方便的密率的呢?它己不是困惑数学家的一个谜;更不是被列为公众关注的未解科学难题之一---------
他研究出的圆球率,根据球体大小比值数“不变真理”为依据,演绎、推理出一系列最简单、最全面、最科学的球体求算方法,打破了几千年以前古代数学家祖冲之对“圆周率”推理不先进、不科学的原始估算方法;他从科学的角度上为人们彻底地揭开了古代数学家祖冲之发明圆周率π=3.1415926—7小数点后七位数之谜,他为数学球体知识的来自方法终于划上一个圆满句号---。他,就是在数学领域独具创见的魏德武老师。 魏德武1963年生,福建沙县人。80年代初,研发者魏德武因遭到福建省永安公检法黑恶势力的残酷迫害,他发明的这项数学科研成果一直都得不到发扬光大。在此,中国互联网新闻中心(中国网)对该项成果做出了充分肯定,认为该成果的确不失为一种好方法,特推出报道,大家都知道真正最有价值的知识来自于方法,古代数学家祖冲之发明的所谓“圆周率”;在数学书中,他只告诉世人“圆周率”的发明结果,却没有告诉“圆周率”发明的来自方法,可见,古代数学家祖冲之对球体知识只知其所以不知其所以然;尤其是祖冲之发明的“圆周率”在计算精确度小数点后七位小数的来自方法,在史书中根本就无从查证,人们对“圆周率”的来自方法不得而知,迄今还是一个谜,缺乏了科学依据。 魏氏圆周率的来自方法就不同了,它完全是根据相似球体大小比值数不变真理为支撑而得,圆周率它可以直接借助尺寸的方法,只要精确地测出其中一个圆球体的圆直径和圆周长的长度即可,然后依据相似比其比值数不变的原理,圆周率完全可以用分数:K=D/L=113/355或k=L/D=355/113的方法来表示,该结论是魏老师通过对无数组比值数的对比和验证,最终确定113/355和355/113为圆周率的最佳优选数。在圆周率K=0.3183098591549-----或圆周率k=3.14159---等小数后,它可以直接精确到无数位小数。从而为后人彻底地揭开了古代数学家“祖冲之”发明的圆周率小数点后七位数来自方法之谜。 显而易见,圆球率的再现,最重要的一点,并不在仅此而已,其推出的主要原因就是通过一个真实的记载,20世纪70年代一位13岁少年对“圆球率”的数学思维和研发过程为例举,从而达到引导和启发学生去创思维、创方法、创意思、创精神,培养学生都能养成一种独立思考解决问题的能力

B. 介绍一个数学家,介绍两个数学思想和两个数学学习方法

数学家:

陈景润,1933年5月22日生于福建福州,当代数学家。

1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。 1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员。1992年任《数学学报》主编。

数学思想:

1.函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。

2.方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。

数学学习方法:

  1. 数学面点面法。首先是面,这是基础。在接触了一定量的题目之后,要注意总结。看哪些题用到了同一个知识点,这些题又是用了哪一些方法。将多而杂的题目归结成具体的知识结构与方法。这就是所说的点了。下面的工作就是由点及面了。将这些总结出来的规律方法投入到具体的实践中去,当然,这里的面不是指数量上的多少,而是指抽象的一类。在总结好方法,梳理好知识要点后,相关的一类题就解决了,也就不用再大量做题了。

  2. 数学抓本质法。所谓本质就是讲一道题,命题老师都会考相应的知识、相应的方法,即一种知识体系,或者一种解题的方法,这就是题目的本质。抓住了题目的本质,才说明你确实掌握了这一类题的特点,掌握了这种方法而不仅仅是会做一道题,就能融会贯通了。这种方法可以通过做一定量的题并认真反思来训练和培养。做题时,不要只求量而不管效率,做完题之后一定要想想这道题考的是哪个或哪些知识点,自己是否已经掌握了,掌握了就没必要再做很多这种类型的题了,没掌握的话就再练一些直到自己以后一见到这一类型的题就能很快解决。

C. 数学教育家波利亚举的例子"烧水",说明了数学中的什么方法

数学家波利亚用一个“烧水”的浅显例子,把“化归”的数学思想解释得非常明白。

所谓“化归”,是把未知的、待解决的问题,转化为已知的、已解决的问题,从而解决问题的过程。这是数学工作者解决问题常见的思路。数学家波利亚用一个“烧水”的浅显例子,把“化归”的数学思想解释得非常明白。
他说,给你一个煤气灶,一个水龙头,一盒火柴,一个空水壶,让你烧一满壶开水,你应该怎么做?你于是回答:把空水壶放到水龙头下,打开水笼头,灌满一壶水,再把水壶放到煤气灶上,划着火柴,点燃煤气灶,把一满壶水烧开。
他说,对,这个问题解决得很好。现在再问你一个问题:给你一个煤气灶,一个水龙头,一盒火柴,一个已装了半壶水的水壶,让你烧一满壶开水,你又应该怎么做?然后波利亚说,物理学家这时会回答:把装了半壶水的壶放到水笼头下,打开水龙头,灌成一满壶水,再把水壶放到煤气灶上,划着火柴,点燃煤气灶,把一满壶水烧开。但是数学家的回答是:把装了半壶水的水壶倒空,就化归为刚才已解决的问题了。

D. 数学家是怎么思考的

数学家在他们的创造性活动中是如何思维的,他们运用了哪些最基本的思维方法,这同样是数学教育必须关心的问题.学习数学,核心是学会像数学家那样进行思维,因此,需要理清数学思维有哪些基本方法,这些方法的要领是什么,如何掌握这些方法.
数学思维的一般方法有:观察与实验,比较、分类与系统化,分析与综合,归纳、类比与联想,化归等.所谓创造性思维也往往要归结为这些思维方法.

⑴ 观察与实验

“观察是人们对事物或问题的数学特征通过视觉获取信息,运用思维辨认其形式、结构和数量关系,从而发现某些规律或性质的方法.”⑨ 数学思维通常都要从观察数学对象开始,结合运用其它方法才能获得关于客观事物的本质和规律的认识,因此观察法是数学思维过程的必需的和第一位的方法.就数学的基础而言,公理的确立就是首先通过观察事物的运动变化,再通过抽象概括才得以形成的.
观察侧重于探索和发现,观察的结果一般需要经过验证才能确认其成立.浙江师范大学任樟辉在他的《数学思维论》中对观察法作了比较认真的分析.他认为:“由于观察是有目的、有选择的一种认识过程,观察者必须细致地对数学对象进行搜索和思考,并根据目的需要适当地变换角度以达到解决问题的目的.对于同一个问题,由于观察者的知识、经验和能力的不同,往往对问题的认识深度就会有很大的差别.在数学教学中,注意培养敏锐的观察力是提高数学思维水平的一个重要方面.要重视观察的知识准备,也要在解题时加强观察意识这一思维环节,使它与分析等其他思维方法相结合.明确观察的目的要求,善于变换不同角度去抓住问题的特征,形成数学直感或产生直觉以解决问题.”⑩ 因此,观察法既是数学家研究数学不可缺少的方法,也是学生学好数学所必须掌握的方法.
“实验是根据所研究问题的需要,按照研究对象的自然状态和客观规律,人为地设置条件使所希望的现象产生或对其进行控制的科学方法.”⑾ 由于实验(或试验)总是和观察相联系,观察常常可用实验作基础,而实验又可使观察得到的性质或规律得以重现或验证.因而它是数学思维的一种间接的但却是基本的方法.在数学中,实验法可用来发现或验证许多数学对象的性质.如几何中对各种图形面积、体积的计算或公式的导出,圆锥曲线光学性质的实验等,都是实验法在数学中的具体应用.
欧拉曾明确指出,数学这门科学,需要观察,还需要实验.波利亚也一再把数学的研究方法与其它自然科学的研究方法做比较,指出它们在收集材料、进行观察与实验方面是完全类似的.

E. 哪个数学家提出了一一列举法

在解决数学问题中,使用穷举法,就是把符合条件的元素(对象)一一列举岀来的方法,是中国的伟大的数学家华罗庚大师首先提岀来的优秀的方法。

F. 数学家的问题是怎么解答的

数学问题就是在数学领域出现的运用相关数学知识去解决的问题。比如歌德巴赫猜想,还有以下例子:在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的着名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题。这23个问题通称希尔伯特问题,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未解决。他在讲演中所阐发的想信每个数学问题都可以解决的信念,对于数学工作者是一种巨大的鼓舞。希尔伯特的23个问题分属四大块:第1到第6问题是数学基础问题;第7到第12问题是数论问题;第13到第18问题属于代数和几何问题;第19到第23问题属于数学分析。[01]康托的连续统基数问题。1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即着名的连续统假设。1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF集合论公理系统的无矛盾性。1963年,美国数学家科恩(P•Choen)证明连续统假设与ZF公理彼此独立。因而,连续统假设不能用ZF公理加以证明。在这个意义下,问题已获解决。

G. 初中数学常用的几种经典解题方法

初中数学里常用的几种经典解题方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法

H. 数学家的小故事和趣味数学题(各十个)谁知道

数学家的故事——苏步青

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心

数学家的墓志铭

一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国着名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".

初中趣味数学题

1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

答案
每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。
许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。
冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道

2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”
正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。
在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。
如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?

答案
由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。
既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。
这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.

3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?
怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?

答案
怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。
怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。
逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。
风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。

4、 《孙子算经》是唐初作为“算学”教科书的着名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。

问雄、兔各几何?

原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。

设x为雉数,y为兔数,则有

x+y=b, 2x+4y=a

解之得

y=b/2-a,

x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。

5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。
经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。
问题:我们该如何定价才能赚最多的钱?
答案:日租金360元。
虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。
当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。

6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=<x<=21 x四次方是个六位数,10的四次方是10000,离六位数差远啦,15的四次方是50625还不是六位数,17的四次方是83521也不是六位数。18的四次方是104976是六位数。20的四次方是160000;21的四次方是194481; 综合上述,得18=<x<=21,那只可能是18,19,20,21四个数中的一个数;因为这两个数刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,四位数和六位数正好用了十个数字,所以四位数和六位数中没有重复数字,现在来一一验证,20的立方是80000,有重复;21的四次方是194481,也有重复;19的四次方是130321;也有重复;18的立方是5832,18的四次方是104976,都没有重复。 所以,维纳的年龄应是18。
把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。
答案:663

I. 数学世界难题解决了那些以及我们如何去解决

希尔伯特提出过新世纪要解决的若干个问题,共23个:
[01]康托的连续统基数问题。
1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即着名的连续统假设。1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF集合论公理系统的无矛盾性。1963年,美国数学家科恩(P•Choen)证明连续统假设与ZF公理彼此独立。因而,连续统假设不能用ZF公理加以证明。在这个意义下,问题已获解决。
[02]算术公理系统的无矛盾性。
欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。根茨(G•Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的无矛盾性。
[03]只根据合同公理证明等底等高的两个四面体有相等之体积是不可能的。
问题的意思是:存在两个登高等底的四面体,它们不可能分解为有限个小四面体,使这两组四面体彼此全等德恩(M•Dehn)1900年已解决。
[04]两点间以直线为距离最短线问题。
此问题提的一般。满足此性质的几何很多,因而需要加以某些限制条件。1973年,苏联数学家波格列洛夫(Pogleov)宣布,在对称距离情况下,问题获解决。
[05]拓扑学成为李群的条件(拓扑群)。
这一个问题简称连续群的解析性,即是否每一个局部欧氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥马利(Montgomery)、齐宾(Zippin)共同解决。1953年,日本的山迈英彦已得到完全肯定的结果。
[06]对数学起重要作用的物理学的公理化。
1933年,苏联数学家柯尔莫哥洛夫将概率论公理化。后来,在量子力学、量子场论方面取得成功。但对物理学各个分支能否全盘公理化,很多人有怀疑。
[07]某些数的超越性的证明。
需证:如果 是代数数, 是无理数的代数数,那么 一定是超越数或至少是无理数(例如, 和 )。苏联的盖尔芳德(Gelfond)1929年、德国的施奈德(Schneider)及西格尔(Siegel)1935年分别独立地证明了其正确性。但超越数理论还远未完成。目前,确定所给的数是否超越数,尚无统一的方法。
[08]素数分布问题,尤其对黎曼猜想、哥德巴赫猜想和孪生素共问题。
素数是一个很古老的研究领域。希尔伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孪生素数问题。黎曼猜想至今未解决。哥德巴赫猜想和孪生素数问题目前也未最终解决,其最佳结果均属中国数学家陈景润。
[09]一般互反律在任意数域中的证明。
1921年由日本的高木贞治,1927年由德国的阿廷(E•Artin)各自给以基本解决。而类域理论至今还在发展之中。
[10]能否通过有限步骤来判定不定方程是否存在有理整数解?
求出一个整数系数方程的整数根,称为丢番图(约210-290,古希腊数学家)方程可解。1950年前后,美国数学家戴维斯(Davis)、普特南(Putnan)、罗宾逊(Robinson)等取得关键性突破。1970年,巴克尔(Baker)、费罗斯(Philos)对含两个未知数的方程取得肯定结论。1970年。苏联数学家马蒂塞维奇最终证明:在一般情况答案是否定的。尽管得出了否定的结果,却产生了一系列很有价值的副产品,其中不少和计算机科学有密切联系。
[11]一般代数数域内的二次型论。
德国数学家哈塞(Hasse)和西格尔(Siegel)在20年代获重要结果。60年代,法国数学家魏依(A•Weil)取得了新进展。
[12]类域的构成问题。
即将阿贝尔域上的克罗内克定理推广到任意的代数有理域上去。此问题仅有一些零星结果,离彻底解决还很远。
[13]一般七次代数方程以二变量连续函数之组合求解的不可能性。
七次方程 的根依赖于方程中的3个参数 、 、 ; 。这一函数能否用两变量函数表示出来?此问题已接近解决。1957年,苏联数学家阿诺尔德(Arnold)证明了任一在 上连续的实函数 可写成形式 ,这里 和 为连续实函数。柯尔莫哥洛夫证明 可写成形式 ,这里 和 为连续实函数, 的选取可与 完全无关。1964年,维土斯金(Vituskin)推广到连续可微情形,对解析函数情形则未解决。
[14]某些完备函数系的有限的证明。
即域 上的以 为自变量的多项式 , 为 上的有理函数 构成的环,并且 试问 是否可由有限个元素 的多项式生成?这个与代数不变量问题有关的问题,日本数学家永田雅宜于1959年用漂亮的反例给出了否定的解决。
[15]建立代数几何学的基础。
荷兰数学家范德瓦尔登1938年至1940年,魏依1950年已解决。
注:舒伯特(Schubert)计数演算的严格基础。
一个典型的问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观的解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学有密切的关系。但严格的基础至今仍未建立。
[16]代数曲线和曲面的拓扑研究。
此问题前半部涉及代数曲线含有闭的分枝曲线的最大数目。后半部要求讨论备 的极限环的最多个数 和相对位置,其中 、 是 、 的 次多项式。对 (即二次系统)的情况,1934年福罗献尔得到 ;1952年鲍廷得到 ;1955年苏联的波德洛夫斯基宣布 ,这个曾震动一时的结果,由于其中的若干引理被否定而成疑问。关于相对位置,中国数学家董金柱、叶彦谦1957年证明了 不超过两串。1957年,中国数学家秦元勋和蒲富金具体给出了 的方程具有至少3个成串极限环的实例。1978年,中国的史松龄在秦元勋、华罗庚的指导下,与王明淑分别举出至少有4个极限环的具体例子。1983年,秦元勋进一步证明了二次系统最多有4个极限环,并且是 结构,从而最终地解决了二次微分方程的解的结构问题,并为研究希尔伯特第[16]问题提供了新的途径。
[17]半正定形式的平方和表示。
实系数有理函数 对任意数组 都恒大于或等于0,确定 是否都能写成有理函数的平方和?1927年阿廷已肯定地解决。
[18]用全等多面体构造空间。
德国数学家比贝尔巴赫(Bieberbach)1910年,莱因哈特(Reinhart)1928年作出部分解决。
[19]正则变分问题的解是否总是解析函数?
德国数学家伯恩斯坦(Bernrtein,1929)和苏联数学家彼德罗夫斯基(1939)已解决。
[20]研究一般边值问题。
此问题进展迅速,己成为一个很大的数学分支。日前还在继读发展。
[21]具给定奇点和单值群的Fuchs类的线性微分方程解的存在性证明。
此问题属线性常微分方程的大范围理论。希尔伯特本人于1905年、勒尔(H•Rohrl)于1957年分别得出重要结果。1970年法国数学家德利涅(Deligne)作出了出色贡献。
[22]用自守函数将解析函数单值化。
此问题涉及艰深的黎曼曲面理论,1907年克伯(P•Koebe)对一个变量情形已解决而使问题的研究获重要突破。其它方面尚未解决。
[23]发展变分学方法的研究。
这不是一个明确的数学问题。20世纪变分法有了很大发展。

兄弟,我觉得你若是个天才,那么你可以尝试,但是很多东西光是一个概念或者是理论就足够你花时间的了,所以别瞎想了,好好读书吧。

阅读全文

与举例数学家解决数学问题的方法相关的资料

热点内容
冲米粉的正确方法玉米饼的做法 浏览:480
口风琴吹管使用方法 浏览:748
航空电缆对接插头包扎的方法步骤 浏览:620
积分电路计算方法 浏览:350
如何用最简便的方法做仓鼠窝 浏览:395
办公软件使用方法 浏览:679
如何知道车辆转向灯的使用方法 浏览:241
用什么方法化解尿酸 浏览:321
hiv抗体检测的方法有哪些 浏览:951
摩托真空胎安装方法 浏览:591
有什么方法比较快入眠 浏览:416
研究一般课题的科学方法 浏览:454
女生自助购物正确方法 浏览:155
急性鼻炎咽喉炎的治疗方法 浏览:927
大金过桥检测方法 浏览:756
碳酸钠和硫酸铵鉴别方法 浏览:209
如何区分家长类型和沟通方法 浏览:588
秦艽的种植方法 浏览:325
你会用简便方法计算53 浏览:338
主要的研究方法是什么 浏览:115