A. 学初中数学解题的窍门,方法。。。 好烦恼啊~帮帮我- -谢了~
楼主
上面那两种方法都很笨,我很权威地说,我以前小学的数学不怎么样,到中学因为辅导老师的精心照顾才发挥出自己优越的才能。我不知道楼主是初几,我记得我的数学是在初二开始杀红眼的,几何能够让人疯狂,只要楼主把思维方向改变就可以了,不需要什么快速的运算能力。我的运算就很差,只要思维敏捷,无论什么题型,楼主都无敌。
这个解释很简单,高手想的东西跟垃圾就不一样。
问题说到重点了,怎样把思维提高,我是这样做的,把一些很难的题来压自己,越难越好。一般我都用逆向思维,比如像证明题,我都是用反证法的思想(但是没用反证法,只是脑子里想想)。其他的就需要老师啦,把你想的和老师所想的都结合,看看两者的差别,再把自己所想的努力去接近老师的。这是我教别人的方法,其实我没有那么做,我认为我是数学天才,老师也无法击败我。
还有一点,我跟一些高手交谈过,无论哪个人多厉害,他的做题经验肯定是相当大的,也就是“题海战术”。不要总是认为自己做够了题,做了一点题就认为自己已经实行“题海战术”,你从生下来做的题跟我们比可能连小溪都不算,不要听别人说题海战术不好,实际上是他们根本没把题海实行到位,所以说要多做题。
最后一句
祝愿你提高数学成功
B. 初中数学解题技巧与方法
初中生数学的解题技巧和方法需要你多练习,多做题,这样才可以掌握它的技巧和方法等
C. 初中数学考试方法与技巧总结
攻略一:概念记清,基础夯实。数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是"不定项选择题"就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的四本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:适当做题,巧做为王。有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要"埋下头去做题,抬起头来想题",在做题中关注思路、方法、技巧,要"苦做"更要"巧做".考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
攻略三:前后联系,纵横贯通。在做题中要注重发现题与题之间的内在联系,绝不能"傻做".在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到"触类旁通"的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。
D. 初中数学解题基本思路
先说基础知识部分,掌握好教材书本上的基本习题,这样能完成比较基础的填空题,
在说中档题,基本上分成单一代数题或单一几何题,或者代数几何综合在一起的题目,解题方法也都是不一样的,代数主要是会计算(注意解题的步骤和简便算法,算律的使用等等),会解方程,会看函数的图像,会看统计图表,几何题主要要对图形的识别认识要清楚,例如一看就知道要证明全等,或者用四边形的判定及性质,或者要用相似等等知识来解决,培养自己的‘形感’。
再说大综合题,基本上就是考卷上的最后两题,这些题要求你使用数学知识解题技巧和方法特别灵活,一般地此类题的前几问都不是特别难,你先有耐心把问题的条件先看清楚之后,考虑多种解题思路和办法加以解决,例如在坐标系内有正方形边上有动点求面积或者求解析式的问题,首先看看问题的已知边长是多少,速度多少,朝哪个方向运动,然后求出相关长度,若求函数关系可以先看看从何处入手,分析,归纳,总结,分类,类比,对比,联想,构造等等方法都可使用。
另外就是一定基础要扎实,多做题,在实战中总结经验和心得体会。
E. 初中数学解题的几种思路
随着对数学对象的研究的深入发展,数学的解题方法需要不断丰富和完善。数学教师钻研习题、精通解题方法,能够进一步促进教师熟练地掌握中学数学教材,夯实解题的基本功,掌握解题技巧,积累丰富教学经验,提高业务水平和教学能力。本文介绍的几种解题方法,均是初中数学中最常用的,有些方法甚至是教学大纲明确要求掌握的。
随着社会科技的高速进步,数学学科的不断发展,以及对数学对象的深入研究,初中数学的难度越来越大,给学生们带来无形的学习压力。数学题目由于难度不断增加,仅仅靠用传统的题海战术来提高解题能力的做法难以收到良好的效果。所以,在数学教学中加深对解题方法的探讨,使教师和学生们共同掌握规律性的方法,得到多数人的认可,这也是未来数学教学改革的方向之一。因此,本文通过列举几种常见的初中数学解题方法,给予同学们解题思路的指引,以达到掌握解题规律,缓解学习压力以及提高学习效率的目的。
1 配方解题法
将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。通常用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化筒根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2 换元解题法
解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、 变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。换元的方法有:局部换元、三角换元、均值换元等。换元的种类有:等参量换元、非等量换元。
3 待定系数解题法
它是中学数学中的一种比较常用的方法。有些时候通过题干就能确定出结果含有某种待定的系数,那么可以通过题目的条件来列出关于待定系数的等式,找出其中的某种关系,从而来解决看似比较困哪的题目。
4 判别式法解题法
可以利用方程式ax2+bx+c=0中△=b2―4ac的定理,它的用处不仅可以用来断定根的性质,而且对于代数式变形、求解方程组、不等式求解、几何图形分析更是一种解题方法。韦达定理最基本的用途在于根据一根求解另一个根或者根据两个数的和与积,分别求出这两个数。另外,利用判别式求出方程根的对称函数以及判断根的符号,甚者解答二次函数等复杂问题。判别式法应用面广泛,运用灵活多变,是必须掌握的有效方法之一。
5 面积解题法
在平面几何版块中,根据几何固定的面积公式推导与面积计算相关的性质,利用这种性质和关系证明或者计算面积的方法称为面积法,利用面积法往往能收到事半功倍的效果。几何题目中已知量和未知量都可以通过面积公式充分联系起来,并计算出所需要求证的结果。面积解题法的便捷之处在于善于利用面积法来分析几何元素间的联系,适当的时候只要稍添置辅助线就能分析之间的数量关系。
6 反证解题法
反证解题法与正面解题的思路不同之处在于方法预先提出与命题结果截然相反的假设。下一步根据这个假设为起点,按照逻辑层层推理,最后推导出矛盾,以此断定该假设为假命题,从反面肯定原命题为真命题。反证解题法有两种,一类为归谬反证法,另外一类为穷举反证法。反证法命题证明一般过程为:提出假设;进行归谬;求出结论。
提出反面假设是该方法的第一步,在做出假设之前,需要熟悉一些反设术语具体像:是与不是,存在或者不存在,是否平行,垂直与否,等于或是不等于,小于还是大于,至少有n个与至多有(n―1)个等等。其中反证解题法的关键是归谬,虽然推出矛盾的过程是灵活多变的,但以反面假设为依据是基础,否则推导过程将无法进行。通常导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾、与反设矛盾、自相矛盾。
7 其他解题法
①直接推演法:根据题目给定的条件为出发点,把所学的概念、公式、定理带入题目之中进行推理或运算,最后推导结论,这是解题过程中的传统方法,我们把这种解法叫做直接推演法。
②答案验算法:利用题目寻找合适的验证条件,再根据下一步的验证,试图求出正确答案,同时也可以将提供的参考答案代入题目中进行验证验算,确定哪一个答案是正确的,这种方法叫做验证法(也称代人法)。这种方法常常运用于定量命题题目之中。
③数字图形元素法:元素法通常把数字又或者图形是代入题设条件或结论中去,从而获得解答。这是特殊元素法的典型特点。
④排除法:由于选择题的正确答案通常都是唯一的,教师引导学生根据数学知识或推理、演算,排除错误的选项,再把其余的答案进行二次筛选,最终选出正确结论,这种方法的叫排除、筛选法。
⑤作图法:依据已知的条件,画出图形,借助图形形象具体的特点把抽象的命题简单化,以图象的性质、特点来判断,做出正确的选择。这称为图解法。图解法通常应用于选择题或者是应用题。
⑥分析法:直接按照题目给予的条件和结论,按照逻辑顺序一步一步作详尽的分析、归纳和判断,继而不断计算和推导正确答案,这一类方法称为分析法。
8 结语
数学学科是学习其他理工科课程的前提和基础,对学生们以后的工作和生活产生深远影响。灵活有效的数学解题方法,往往能够起到事半功倍的作用。教师在数学教学过程中,要善于剖析课程内容的重点和难点,探索不同种途径构建适合学生的解题方法,从而不断培养学生的数学思维以及解题能力。
F. 怎么学好初中数学方法技巧
一、课内重视听讲,课后及时复习。
课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。
2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。
3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
G. 《初中数学解题方法与技巧 》怎么样
楼上的根本没看过这书吧,这回答谁都会
H. 怎样解题 初中数学解题方法与技巧
把定义公式记熟了,不能死记硬背,要理解者去背。代数的话,简单一些,但是函数比较难。几何的话,那些求证公式,性质,必须记熟了。初二下册数学最后一章都是求证,平行四边形,菱形,正方形…,还有≌,∽这些都必须记熟了,几何当然不只是背,要多做题,把自己的思维放开