㈠ 矩形的判定方法
矩形的判定:
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。矩形的中点四边形是菱形
㈡ 矩形的判定方法5个
矩形的判定方法5个如下:
有一个角是直角的平行四边形是矩形。对角线相等的平行四边形是矩形。有三个角是直角的四边形是矩形。经过证明在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。对角线相等且互相平分的四边形是矩形。
一般地,如果要证明一个四边形是矩形或菱形,应先证明四边形为平行四边形,再证明平行四边形是矩形还是菱形。而证明是否是正方形时,可以从两个途径着手,和证明矩形、菱形一样,先证明为平行四边形,接着证明是矩形或者菱形,最后通过已知条件或者求证说明是正方形。相关公式:面积:S=ab(注:a为长,b为宽);周长:C=2(a+b)(注:a为长,b为宽)