导航:首页 > 方法技巧 > 如何用简单的方法掌握值域

如何用简单的方法掌握值域

发布时间:2025-01-24 19:06:43

㈠ 求值域的五种方法

求值域的五种方法:

1.直接法:从自变量的范围出发,推出值域。

2.观察法:对于一些比较简单的函数,可以根据定义域与对应关系,直接得到函数的值域。

3.配方法:(或者说是最值法)求出最大值还有最小值,那么值域就出来了。

例题:y=x^2+2x+3x∈【-1,2】

先配方,得y=(x+1)^2+1

∴ymin=(-1+1)^2+2=2

ymax=(2+1)^2+2=11

4.拆分法:对于形如y=cx+d,ax+b的分式函数,可以将其拆分成一个常数与一个分式,再易观察出函数的值域。

5.单调性法:y≠ca.一些函数的单调性,很容易看出来。或者先证明出函数的单调性,再利用函数的单调性求函数的值域。

6.数形结合法,其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

7.判别式法:运用方程思想,根据二次方程有实根求值域。

8.换元法:适用于有根号的函数

例题:y=x-√(1-2x)

设√(1-2x)=t(t≥0)

∴x=(1-t^2)/2

∴y=(1-t^2)/2-t

=-t^2/2-t+1/2

=-1/2(t+1)^2+1

∵t≥0,∴y∈(-∝,1/2)

9:图像法,直接画图看值域

这是一个分段函数,你画出图后就可以一眼看出值域。

10:反函数法。求反函数的定义域,就是原函数的值域。

例题:y=(3x-1)/(3x-2)</p><p>先求反函数y=(2x-1)/(3x-3)

明显定义域为x≠1

所以原函数的值域为y≠1

(1)如何用简单的方法掌握值域扩展阅读:

值域,在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

在实数分析中,函数的值域是实数,而在复数域中,值域是复数。

定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或淡化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数的定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难。实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函数的理解,从而深化对函数本质的认识。

㈡ 数学中,什么是值域,值域该如何算

值域:数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
计算方法
1、化归法
通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。
例如在分解(x²+x+1)(x²+x+2)-12时,可以令y=x²+x,则原式=(y+1)(y+2)-12=y²+3y+2-12=y²+3y-10=(y+5)(y-2)=(x²+x+5)(x²+x-2)=(x²+x+5)(x+2)(x-1).例2,(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6 注意:换元后勿忘还原;利用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
2、图像法
根据函数图象,观察最高点和最低点的纵坐标。
3、配方法

利用二次函数的配方法求值域,需注意自变量的取值范围。
4、单调性法

利用二次函数的顶点式或对称轴,再根据单调性来求值域。
5、反函数法

若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
6、换元法
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围 。
7、判别式法
判别式法即利用二次函数的判别式求值域。
8、复合函数法
设复合函数为f[g(x),]g(x) 为内层函数, 为了求出f的值域,先求出g(x)的值域, 然后把g(x) 看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据 f(x)函数的性质求出其值域。
9、三角代换法
利用基本的三角关系式,进行简化求值。例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1. 直接计算麻烦 用三角代换法比较简单:
做法:设a=sin x ,b=cos x ,c=sin y , d=cos y,则 ac+bd= sin x*sin y + cos x * cos y =cos (y-x),因为我们知道cos (y-x)小于等于1,所以不等式成立。;
10、不等式法
基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
11、分离常数法
把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。

阅读全文

与如何用简单的方法掌握值域相关的资料

热点内容
吃过期拉肚子怎么治疗最快方法 浏览:273
手部创伤出血最简便有效的方法 浏览:473
白菜食用方法 浏览:44
金边吊兰烂心的治疗方法 浏览:558
调洪演算都有哪些方法 浏览:618
桔子种子盆栽种植方法 浏览:755
视频号电脑直播方法 浏览:600
氨瓶的使用方法应注意什么 浏览:122
累积计算方法 浏览:374
用什么方法戒烟快 浏览:42
如何改善关系的好方法 浏览:162
仓鼠户外浴室安装方法 浏览:496
绝地求生的快速上分的方法 浏览:379
短期经验决策分析方法的特点 浏览:640
苹果x指纹锁在哪里设置方法 浏览:900
日产逍客变速箱异响解决方法 浏览:197
计算方法第 浏览:62
汤臣倍健维生素c食用方法 浏览:107
家庭教育学习的方法和步骤 浏览:905
蝗虫解决方法 浏览:474