㈠ 普通PCR、原位PCR、反向PCR和反转录PCR的 基本原理和操作步骤(二)
在科学研究中,每一项新技术的创立都会带来一系列新的研究成果问世,从而推动着各学科的发展。纵观形态研究领域,50年代电子显微镜引入形态学观察领域,带来了从细胞水平到亚细胞水平的深入研究;60-70年代,免疫组织化学与免疫细胞化学技术的广泛应用,又将观察的水平由亚细胞结构推向了蛋白质分子水平,使细胞内众多的活性物质得以进行细胞或亚细胞水平的定位,对医学生物学的发展无疑产生了深刻的影响。70年代,分子生物学技术在形态学中的广泛应用,随着原位杂交技术的出现,使组织细胞内特定的DNA或RNA序列能够被定位,将蛋白质水平又提高到基因水平即核酸分子的观察和定位,从而使人类对许多生命现象在基因水平上的认识得以深化;80年代,分子生物学领域中一项具有强大生命力的技术PCR——多聚酶链反应技术问世了,很快地就被引入形态学观察的领域,使细胞内低拷贝或单拷贝的特定DNA或RNA得以进行定位及观察。这一技术的问世,必将带来更多的研究成果,使形态学的研究又向前迈出一大步。
1基本原理
原位PCR技术的基本原理,就是将PCR技术的高效扩增与原位杂交的细胞定位结合起来,从而在组织细胞原位检测单拷贝或低拷贝的特定的DNA或RNA序列。
PCR技术是在DNA聚合酶的作用下,经过模板的变性、退火和引物延伸三种循环,将引物引导下的特异性靶序列迅速地进行扩增,经过扩增的靶序列(一般能扩增106倍),很容易在凝胶电泳或Southern印记杂交中显示出来,因此,PCR技术具有灵敏度高,特异性强的优势,随着热循环自动化的提高与稳定也使得PCR技术的操作简便易行。但是,PCR技术是在液相中进行的,在扩增前,需将细胞破坏,从中提取核酸作为模板,因此很难将PCR的结果与组织细胞的形态结构联系起来,同时,也很难判断含特异性靶序列的细胞类型。
原位PCR技术成功地将PCR技术和原位杂交技术结合起来,保持了两项技术的优势又弥补了各自的不足。原位PCR技术的待检标本一般先经化学固定,以保持组织细胞的良好形态结构。细胞膜和核膜均具有一定的通透性,当进行PCR扩增时,各种成分,如引物,DNA聚合酶,核苷酸等均可进入细胞内或细胞核内,以固定在细胞内或细胞核内的RNA或DNA为模板,于原位进行扩增。扩增的产物一般分子较大,或互相交织,不易穿过细胞膜或在膜内外弥散,从而被保留在原位。这样原有的细胞内单拷贝或低拷贝的特定DNA或RNA序列在原位以呈指数极扩增,扩增的产物就很容易被原位杂交技术检查。
2 基本类型
根据在扩增反应中所用的三磷酸核苷原料或引物是否标记,原位PCR技术可分为直接法和间接法两大类,此外,还有反转录原位PCR技术等。
2.1直接法原位PCR技术
直接法原位PCR技术是将扩增的产物直接携带标记分子,即使用标记的三磷酸腺苷或引物片断。当标本进行PCR扩增时,标记的分子就掺入到扩增的产物中,显示标记物,就能将特定的DNA或RNA在标本(原位)中显现出来。
常用的标记物有放射性同位素35S,生物素和地高辛,用放射性自显影的方法或用亲和组织化学及免疫组织化学的方法去显示标记物所在位置。
直接法原位PCR技术的优点是操作简便,流程短,省时。缺点是特异性较差,易出现假阳性,扩增效率也较低,特别是在石蜡切片上,上述缺点更为突出。因为在制片过程中,无论是固定,脱水还是包埋,都会导致DNA的损害,而受损的DNA可利用反应体系中的标记三磷酸核苷进行修复,这样标记物就会掺入到DNA的非靶序列中,造成假阳性。若用标记引物的方法进行直接法原位PCR,其扩增的效率比不标记更低。
2.2 间接法原位PCR技术
间接法原位PCR技术师现在细胞内进行特定DNA或RNA扩增,再用标记的探针进行原位杂交,明显提高了特异性,是目前应用最为广泛的原位PCR技术。
间接法原位PCR与直接法不同的是,反应体系与常规PCR相同,所用的引物或三磷酸腺苷均不带任何标记物。即实现先扩增的目的,然后用原位杂交技术去检测细胞内已扩增的特定的DNA产物,因此,实际上是将PCR技术和原位杂交技术结合起来的一种新技术,故又称之为PCR原位杂交(PCR in situ hybridization , PISH)。
间接法PCR技术的优点是特异性较高,扩增效率也较高。缺点是操作步骤较直接法繁琐。
2.3 原位反转录PCR技术
原位反转录PCR(in situ reverse transcription PCR, In Situ RT-PCR)是将液相的RT-PCR技术应用到组织细胞标本中的一种新技术,与RT-PCR(液相)不同点在于,进行原位反转录PCR反应之前,组织标本要先用DNA酶处理,以破坏组织中的DNA酶,这样才能保证扩增的模板是从mRNA反转录合成的cDNA,而不是细胞中原有的DNA。其它基本步骤与液相的RT-PCR相似。
3 基本步骤
原位PCR技术的基本步骤包括标本的制备。原位扩增(PCR)及原位检测等基本环节,现分述如下(重点以石蜡切片为例)。
3.1 标本的制备
原位PCR技术可应用于细胞悬液、细胞涂片、冰冻切片以及石蜡切片。相比较而言,以悬浮的完整细胞做原位PCR效果最好,石蜡切片效果最差。随着技术方面的一些问题被解决,近年也有从石蜡切片中得到满意的PCR效率的报道。效果不好的原因是多方面的,如:玻片上做PCR,热传导较差,热对流不均匀,TaqDNA酶被玻璃片吸附等,更为主要的原因,可能是标本经制片后,细胞缺乏完整的胞浆或核膜,扩增产物易发生弥漫而导致扩增的产物在原位不易保留。绝大多数的病理标本都是以福尔马林固定,石蜡包埋的形式保存的,若能很好地解决石蜡切片原位PCR的有关技术问题,意义显然是十分重大的。
组织细胞的固定 一般认为组织细胞以10%的缓冲福尔马林或4%的多聚甲醛固定后进行原位PCR效果较好。固定的时间一般不宜过长,视组织的大小,一般以4℃4-6小时为宜。
切片的厚度 一般而言,切片若厚一些,原位PCR的效果也较好一些,因为切片越厚,靶DNA的含量也就越多,同时膜结构也较多,防止扩增产物弥散的作用也越明显。但厚切片细胞重叠多,形态学观察的效果就差了,分辨率也将下降。
玻片的处理 为防止石蜡切片在PCR和原位杂交过程中脱落,在玻片应作防脱片处理,常用的方法是涂以多聚赖氨酸或用硅烷化处理,一般能防止组织脱落。
蛋白酶的消化作用 在进行原位扩增之前,组织标本需经蛋白酶处理。经蛋白酶消化的组织细胞,可增加其通透性,充分允许反应体系中的各成分进入细胞内,并能很好的暴露靶序列,以利于扩增。常用的蛋白酶有蛋白酶K,胰蛋白酶或胃蛋白酶。蛋白酶消化的程度就要根据组织固定的程度进行调整。蛋白酶消化后,要注意加热以灭活酶的活性或通过充分的洗涤将酶完全去除,因为只要有少量的残留酶存在,都将对随后进行的PCR反应体系的数量TaqDNA酶产生毁灭性的影响。
蛋白酶消化处理组织细胞可提高通透性,有利于后续进行的各反应成分进入细胞内或核内,但同时也使得扩增产物的弥散机会增多,有可能带来假阳性或假阴性的结果。
原位扩增(PCR)
原位扩增即在组织细胞标本上进行PCR反应,其基本原理与液相PCR完全相同。
引物 PCR所用的引物一般为15-30bp为宜,扩增的片断为100-1000bp左右。原位PCR宜用较短的引物。从石蜡切片中提取的DNA很少超过400bp,RNA很少超过200bp,较长序列的扩增易引起引物与模板的错配而导致非特异性反应的出现。
反应体系 原位PCR的反应体系与常规的液相PCR基本相同,由于是在经过固定的组织切片上进行,为获得较好的扩增效果,有人主张反应体系中的引物,TaqDNA聚合酶以及Mg2+的浓度均应高于液相的PCR反应体系。在反应体系中要加入牛血清白蛋白(BSA),以防止TaqDNA聚合酶与玻片的结合而降低了扩增效率。
热循环 原位PCR的热循环可在专门的热循环仪上进行,操作简便。也可在一般的PCR热循环仪上进行,通常在样品台上覆盖一层铝箔,制成平台,样品台上的空间用矿物油或水充填,将载玻片至于平台上,即可进行热循环的步骤。
为了保证进行充分的扩增,原位PCR热循环中每一步骤的时间可比常规PCR略长些,另外,也可采用热启动(hot start)的方法,即玻片加热到80-94℃时,再立即加入TaqDNA聚合酶。
为了保证反应体系在热循环过程不过多丢失,可用清亮的指甲油,矿物油或PAP笔把盖片四周封闭起来。
洗涤 原位扩增结束后,标本应清洗,以除去弥散到细胞外的扩增产物。洗涤不充分,会导致扩增产物在检测时显现,造成背景过深或假阳性结果的出现。但是,洗涤过度,也会造成细胞内扩增的产物被洗脱,是阳性信号减弱或丢失。
有作者在扩增后用4%多聚甲醛2小时或2%戊二醛5分钟进行后固定,以使扩增的产物在检测时能很好地保留在细胞内,提高检测的敏感性和特异性。
原位检测 原位PCR的扩增产物检测方法,取决于原位PCR的设计方案,直接法则根据标记分子的性质对扩增产物直接进行原位检测。间接法则需用原位杂交的方法进行检测。
4 原位PCR技术的应用
原位PCR技术的突出优势,就是能在组织细胞原位检测出拷贝数较低的特异性基因序列。按照待测基因的性质,可将原位PCR的应用分为检测外源性基因和内源性基因两方面。
4.1用于外源性基因的检测
4.1.1病毒基因的检测
感染病毒的细胞常无较好的检测手段,但当原位PCR技术应用后,使这一极为困难的问题有望解决。
对HIV、HPV、HSV、HBV、HCV等多种病毒的检测,使我们能够成功等观察到这些病毒在艾滋病、生殖系统肿瘤、肝炎及肝癌中的作用,能够及时发现受感染的人群。
4.1.2细菌基因的检测
最突出的应用是在结核杆菌的检测上,当结核病变不够典型时,经过特殊染色的方法很难在镜下找到结核杆菌,而应用原位PCR技术可帮助明确诊断,当结核杆菌很少时仍能在镜下被很容易地找出来。
4.1.3导入基因的检测
在转基因动物的研究中,是否导入了基因,在接受基因治疗的患者体内,是否接受了导入的基因,均可用原位PCR技术来证实。因此,原位PCR技术成为重要的检测手段。
4.2 用于内源性基因的检测
4.2.1异常基因的检测
机体内基因的突变、重排、也可用原位PCR技术进行检测,原癌基因,抑癌基因的突变,恶性淋巴瘤免疫球蛋白重链基因的重排,对肿瘤的研究和诊断无一均提供了广阔的应用前景。
4.2.2固有基因的检测
对于机体细胞内只有单个或几个拷贝的低表达固有基因,原位杂交技术因基因拷贝数太少而无能为力,液相PCR虽可进行扩增检测出来,但不能确定含有该基因的细胞类型,原位PCR技术则弥补了上述两种技术的不足,使得我们能够对人类各种基因进行检测,而完成人类基因图的绘制。
㈡ 血清学诊断 分子生物学诊断 什么叫
常规血清学诊断技术
1.1血清凝集抑制试验(HI)
因为许多动物病毒能够凝集某种类动物的红细胞,由于血凝反应可被特异性抗体所抑制,抗体与病毒结合后,血凝素即不能吸附于红细胞表面的受体上。HI不象其它血清学试验,不需要种属特异的结合〔1,2〕,因此特异性不好。一般检测快速,用于大量筛选野生或饲养的动物样品中的抗体。
1.2 补体结合试验(CF)
由于一个抗体分子与抗原结合后,可以导致数百个补体分子的激活,呈现一定的放大作用,所以补体结合试验是一个比较敏感的方法。虽然在某些病毒型的鉴定上,补体结合试验的检测能力有时不及中和试验和血凝抑制试验,但补体结合试验稳定,特异性高,重复性好,一直仍用于动物血清学中特异性抗体的定量检测〔3〕。
1.3 免疫荧光抗体技术
通过显微镜标本的免疫荧光染色而显示其结果,由于病毒抗原的标记比较困难,常用标记抗体检查未知抗原,此技术具有抗原抗体反应的特异性和染色技术的快速性,并可以在细胞水平上进行抗原定位,故在病毒学研究和诊断中都是一种应用很广的方法〔4~7〕。另外,用此方法也可检测海洋微生物,尤其是细菌〔8〕,避免了细菌培养,从而提供了特异、快速的检测方法。
1.4 酶联免疫吸附试验(ELISA)
ELISA是应用最广的一项免疫学诊断技术,以物理方法将抗体(或抗原)吸附在固相载体上,随后的一系列免疫学和生物化学反应都在此固相载体上进行的免疫酶测定试验,无论是病毒病、禽传染性支气管炎抗体检测〔9〕、禽多瘤病毒特异性抗体检测〔10〕,还是细菌,例如牛布鲁氏杆菌病〔11,12〕,或是寄生虫引起的疾病、犬弓形体病〔13〕、羊肝片吸虫〔14〕,都应用到了酶联免疫吸附试验技术。因此,ELISA在各种动物疾病诊断上发挥了重要的作用。ELISA作为根除控制计划的初筛方法是非常理想的,费用相对较少,比常用的血清学方法有明显的优点,不需要抗体的第二特征,例如血凝性、结合补体的能力〔11〕,用时少,敏感性、重复性、特异性好,可筛选检测大量的样品〔15〕。利用纯化的抗原,单克隆抗体可提高反应检测的特异性〔9,10,11〕。
1.5 斑点酶联免疫吸附试验
将酶标反应板换成硝酸纤维膜,即为斑点酶联免疫吸附试验,将少量的试剂点在硝酸纤维膜或其它能结合蛋白的膜上,同抗原特异的抗体以及酶结合抗体反应,加入能形成不溶性有色沉淀的底物,使固相膜染色,形成有颜色的斑点,直接判读结果。利什曼原虫病〔16〕,牛呼吸道合包体病毒〔17〕,无钩绦虫〔18〕,免疫寄生虫〔19〕,克服了显微镜检查的麻烦。因硝酸纤维素膜吸附性能强,一般在包被后须再进行封闭。如将硝酸纤维素膜裁剪成膜条,并在同一张膜条上点有多种抗原,将整个膜条与同一份血清反应,则可同时获得对多种疾病的诊断结果,3种主要禽类疾病的同时检测〔20〕,多种蛋白的分析〔21〕,此方法快速,容易操作,已广泛应用于动物疾病的诊断。
免疫血清学技术的发展趋向一直是高度特异性、高度敏感性,精密的分辨能力,高水平的定位,试验电脑化,反应微量化,方法标准化和试剂商品化,以及方法简便、快速。随着生物化学和分子生物学等学科迅速发展,相继出现了许多新的诊断技术,可以从分子水平对疾病的致病机理,诊断、治疗和预防进行研究。
2与分子生物学技术相结合的诊断技术
2.1PCR-ELISA
将PCR技术与ELISA相结合的一种抗原检测技术,又称免疫PCR。该技术是由Sano T等在1992年建立的,其本质是一种以PCR技术代替酶反应来放大显示抗原抗体结合率的改进ELISA,利用ELISA技术检测PCR扩增的产物〔3〕。利用了PCR的指数扩增效率带来极高的敏感度,同时又具有高的特异性的抗原检测系统。用亲和素包被微孔板,封闭后,加入标记于捕获探针3’端的生物素,而捕获探针5’端和待检靶序列5’端的一段互补,通过生物素和亲和素的交联作用,将捕获探针固定在微孔板上,制成固相捕获系统。其次PCR缓冲液中加入一定比例的地高辛标记的DUTP,经PCR扩增后,扩增产物与微孔板上的捕获探针进行液相杂交,带有地高辛的靶序列即被捕获,再在微孔板中加入用辣根过氧化物酶(HRP)标记的抗地高辛抗体,再加入底物如TMB显色,进行ELISA检测。
此法具有高灵敏度,检测结果可靠,可以进行半定量检测的优点,可用于病毒的检测、疾病诊断和目的基因检测。此方法较常规PCR灵敏度提高了10倍〔22,23〕,此方法鉴定PCR产物更快速,判定结果客观,易于操作,尤其在筛选大量品时,是非常理想、有用的工具。PCR-ELISA方法避免了在常规PCR中,由于非特异的产物和不名原因引起的条带反应,而作出的主观解释〔23〕。可筛选大量食源性病原体,帮助加工厂监测食品的污染水平,进行危险品分析〔24〕。尤其在寄生虫检测方面,以前多用血涂片,而现在应用PCR-ELISA检测牛巴
㈢ 什么是PCR检测他的原理是什么需要什么材料
聚合酶链反应(Polymerase Chain Reaction ,PCR)是80年代中期发展起来的体外核酸扩增技术。它具有特异、敏感、产率高、快速、简便、重复性好、易自动化等突出优点;能在一个试管内将所要研究 的目的基因或某一DNA片段于数小时内扩增至十万乃至百万倍,使肉眼能直接观察和判断;可从一根毛发、一滴血、甚至一个细胞中扩增出足量的DNA供分析研 究和检测鉴定。过去几天几星期才能做到的事情,用PCR几小时便可完成。PCR技术是生物医学领域中的一项革命性创举和里程碑。
PCR技术简史
PCR的最早设想 核酸研究已有100多年的历史,本世纪60年代末、70年代初人们致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想:“经过DNA变性,与合适的引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因”。
PCR的实现 1985年美国PE-Cetus公司人类遗传研究室的Mullis等发明了具有划时代意义的聚合酶链反应。其原理类似于DNA的体内复制,只是在试管中给 DNA的体外合成提供以致一种合适的条件---摸板DNA,寡核苷酸引物,DNA聚合酶,合适的缓冲体系,DNA变性、复性及延伸的温度与时间。
PCR的改进与完善 Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的 Klenow片段,其缺点是:①Klenow酶不耐高温,90℃会变性失活,每次循环都要重新加。②引物链延伸反应在37℃下进行,容易发生模板和引物之 间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于 Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添了不少困难。这使得 PCR技术在一段时间内没能引起生物医学界的足够重视。1988年初,Keohanog改用T4 DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性也较高,只有所期望的一种DNA片段。但每循环一次,仍需加入新酶。1988年Saiki 等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus) 中提取到一种耐热DNA聚合酶。此酶具有以下特点:①耐高温,在70℃下反应2h后其残留活性大于原来的90%,在93℃下反应2h后其残留活性是原来的 60%,在95℃下反应2h后其残留活性是原来的40%。②在热变性时不会被钝化,不必在每次扩增反应后再加新酶。③大大提高了扩增片段特异性和扩增效 率,增加了扩增长度(2.0Kb)。由于提高了扩增的特异性和效率,因而其灵敏性也大大提高。为与大肠杆菌多聚酶I Klenow片段区别,将此酶命名为Taq DNA多聚酶(Taq DNA Polymerase)。此酶的发现使PCR广泛的被应用。
PCR技术基本原理
PCR技术的基本原理 类似于DNA的 天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加 热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引 物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合 物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需 2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。
PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%, 但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进 入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情 况下,平台期的到来是不可避免的。
PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5’端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引物所 结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的DNA为模板,引物是从3’端开始延伸,其5’端是固定的,3’端则没 有固定的止点,长短不一,这就是“长产物片段”。进入第二周期后,引物除与原始模板结合外,还要同新合成的链(即“长产物片段”)结合。引物在与新链结合 时,由于新链模板的5’端序列是固定的,这就等于这次延伸的片段3’端被固定了止点,保证了新片段的起点和止点都限定于引物扩增序列以内、形成长短一致的 “短产物片段”。不难看出“短产物片段”是按指数倍数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计, 这使得PCR的反应产物不需要再纯化,就能保证足够纯DNA片段供分析与检测用。
PCR反应体系与反应条件
标准的PCR反应体系:
10×扩增缓冲液 10ul
4种dNTP混合物 各200umol/L
引物 各10~100pmol
模板DNA 0.1~2ug
Taq DNA聚合酶 2.5u
Mg2+ 1.5mmol/L
加双或三蒸水至 100ul
PCR反应五要素: 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+
引物: 引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。
设计引物应遵循以下原则:
①引物长度: 15-30bp,常用为20bp左右。
②引物扩增跨度: 以200-500bp为宜,特定条件下可扩增长至10kb的片段。
③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。
④避免引物内部出现二级结构,避免两条引物间互补,特别是3’端的互补,否则会形成引物二聚体,产生非特异的扩增条带。
⑤引物3’端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。
⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。
⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。
引物量: 每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。
酶及其浓度 目前有两种Taq DNA聚合酶供应, 一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。催化一典型的PCR反应约需酶量2.5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。
dNTP的质量与浓度 dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH或1M Tris。HCL的缓冲液将其PH调节到7.0~7.5,小量分装, -20℃冰冻保存。多次冻融会使dNTP降解。在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。浓度过低又会降低PCR产物的产量。dNTP能与Mg2+结合,使游离的Mg2+浓度降低。
模板(靶基因)核酸 模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。 SDS的主要功能是: 溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀 核酸。提取的核酸即可作为模板用于PCR反应。一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接 用于PCR扩增。RNA模板提取一般采用异硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。
Mg2+浓度 Mg2+对PCR扩增的特异性和产量有显着的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。
PCR反应条件的选择
PCR反应条件为温度、时间和循环次数。
温度与时间的设置: 基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法, 除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。
①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则 需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。
②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长 度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度:
Tm值(解链温度)=4(G+C)+2(A+T)
复性温度=Tm值-(5~10℃)
在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。
③延伸温度与时间:Taq DNA聚合酶的生物学活性:
70~80℃ 150核苷酸/S/酶分子
70℃ 60核苷酸/S/酶分子
55℃ 24核苷酸/S/酶分子
高于90℃时, DNA合成几乎不能进行。
PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够 的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。
循环次数 循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。
PCR反应特点
特异性强 PCR反应的特异性决定因素为:
①引物与模板DNA特异正确的结合;
②碱基配对原则;
③Taq DNA聚合酶合成反应的忠实性;
④靶基因的特异性与保守性。
其中引物与模板的正确结合是关键。引物与模板的结合及引物链的延伸是遵循碱基配对原则的。聚合酶合成反应的忠实性及Taq DNA聚合酶耐高温性,使反应中模板与引物的结合(复性)可以在较高的温度下进行,结合的特异性大大增加,被扩增的靶基因片段也就能保持很高的正确度。再通过选择特异性和保守性高的靶基因区,其特异性程度就更高。
灵敏度高 PCR产物的生成量是以指数方式增加的,能将皮克(pg=10-12g)量级的起始待测模板扩增到微克(ug=10-6g)水平。能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU(空斑形成单位);在细菌学中最小检出率为3个细菌。
简便、快速 PCR反应用耐高温的Taq DNA聚合酶,一次性地将反应液加好后,即在DNA扩增液和水浴锅上进行变性-退火-延伸反应,一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。
对标本的纯度要求低 不需要分离病毒或细菌及培养细胞,DNA 粗制品及总RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等粗制的DNA扩增检测。 PCR扩增产物分析
PCR产物是否为特异性扩增 ,其结果是否准确可靠,必须对其进行严格的分析与鉴定,才能得出正确的结论。PCR产物的分析,可依据研究对象和目的不同而采用不同的分析方法。
凝胶电泳分析:PCR产物电泳,EB溴乙锭染色紫外仪下观察,初步判断产物的特异性。PCR产物片段的大小应与预计的一致,特别是多重PCR,应用多对引物,其产物片断都应符合预讦的大小,这是起码条件。
琼脂糖凝胶电泳: 通常应用1~2%的琼脂糖凝胶,供检测用。
聚丙烯酰胺凝胶电泳:6~10%聚丙烯酰胺凝胶电泳分离效果比琼脂糖好,条带比较集中,可用于科研及检测分析。
酶切分析:根据PCR产物中限制性内切酶的位点,用相应的酶切、电泳分离后,获得符合理论的片段,此法既能进行产物的鉴定,又能对靶基因分型,还能进行变异性研究。
分子杂交:分子杂交是检测PCR产物特异性的有力证据,也是检测PCR 产物碱基突变的有效方法。
Southern印迹杂交: 在两引物之间另合成一条寡核苷酸链(内部寡核苷酸)标记后做探针,与PCR产物杂交。此法既可作特异性鉴定,又可以提高检测PCR产物的灵敏度,还可知其分子量及条带形状,主要用于科研。
斑点杂交: 将PCR产物点在硝酸纤维素膜或尼膜薄膜上,再用内部寡核苷酸探针杂交,观察有无着色斑点,主要用于PCR产物特异性鉴定及变异分析。
㈣ pcr核酸检测是什么意思方法及步骤
核酸检测是目前全球用来对是否携带新冠病毒进行确定的一种有效方式。目前大家主要使用的是鼻拭子、咽拭子以及抗体血清lgm进行参考。但是根据最新的新加坡入境要求是进行pcr核酸检测,那么pcr核酸检测是什么意思呢?
PCR的意思是聚合酶链式反应,能够用来扩增DNA,从而将微量的DNA扩增到能够检测的程度。有些病毒的核酸是DNA,需要采用这个方法进行检测。所以PCR并不是进行的检查,而是检测DNA的一种方法。比如乙肝病毒DNA定量,用的就是这一种方法。检查DNA的目的,一方面是可以诊断疾病,如果连病原体的DNA都能检测到,就说明感染了这种病原体;另一方面是判断病毒复制的多少,从而判断病情严重程度或者治疗效果。
进行核酸检验,需要经过取样、留样、留存、核酸提取、上机检测五个步骤。
核酸检测的第一步就是采集人体分泌物,用鼻试子或咽试子擦拭鼻腔或咽后壁及双侧咽扁桃体处。
第二步医务人员进行留样,将试子头浸入细胞保存液中,折断尾部后立即旋紧管盖。
第三部要将样本放入密闭袋中,保存好并及时送检。
第四步将样本送进实验室,提取核酸。
第五步,将提取物进行荧光PCR扩增反应。
核酸(nucleicacid),是一类由核苷酸(nucleotide)构成的生物大分子,分为核糖核酸(ribonucleic
acid,宴前者RNA)和脱氧核糖核酸(deoxyribonucleic
acid,DNA)两类,其中RNA多为单链结构,DNA多为双链结构。除朊病毒(prion)外,核酸是构成生命所必需的生物大分子,其主要作用是构成生命体的遗传信息载体,除此之外,还有部分核酸可作为及参与构成具有生物活性的酶分子或晌薯其他分子机器
。
核酸检测顾名思义就是针对核酸开展检测。
核酸检测有何独特的优势呢?为何能作为新冠病毒确诊的“金标准”呢?
其实每一种检测方法都有其擅长的应用场景。以病毒检测为例,通常的免疫学检测方法(胶体金、ELISA、化学发光等)的检测对象是病毒的抗原或抗体,相当于“侧面描绘”。由于从感染到可检测存在一个时间窗口期,因此免疫学检测方法一般不合适作为早期诊断。
1、假阳性
假阳性通常比较少。一般实验室人员操作不当会导致样本间交叉污染或扩增产物的遗留污染,该种情况下可能会导致假阳性。
不过假阳性可以通过严格控制检测流程、以及执行若干个阴性样本随机参与检测的策略而有效规避。
2、假阴性
在这里需要说明的是,PCR检测的假阴性与临床的假阴性实际上不是一个概念。
以网络上激烈讨论的新冠病毒的诊断为例,临床假阴性是指临床症状和影像学高度疑似被感染、但PCR检测却多次或始终为阴性的情况;而PCR检测假阴性是指所采集样本中存在足够量的新型冠状病毒但却没有检出悔简的情况。
避免核酸检测的假阴性,主要需要解决:(1)被感染者的细胞中有足量的病毒、(2)采集样本中可以采集到含有病毒的细胞、以及(3)检测出样本中的病毒这三个环节。
其中PCR试剂盒的技术参数优劣主要影响第三个检测环节。
仅针对第三个检测环节,若样本中病毒数量低于一个程度(低于最低检测限),PCR试剂盒就无法检出。从这个角度看,PCR检测的假阴性是无法完全避免的。这也是为何需要补充开发病毒的特异抗体检测的原因所在。
实验室建设坚持高标准、严要求,严格按照国家《医学生物安全二级实验室建筑技术标准》进行建设,建设面积100余平方米,分为试剂贮存和准备区、标本制备与提取区、扩增和产物分析区三个区域。实验室内配置全自动核酸提取仪、实时荧光定量PCR仪、扩增仪、高压灭菌器、B2型生物安全柜、超净工作台、超低温冰箱等仪器,消毒和防护设施齐全,符合相关生物实验室安全标准。为防止实验室外的区域被污染,实验室的气压均为负压,有效降低感染风险。此外,实验室配备了污水处理系统,达到了废液的合理排放和处理。
*目前我国多地区建设了PCR核酸检测实验室用以进行新冠病毒核酸检测