导航:首页 > 方法技巧 > 学一题有解的方法和技巧

学一题有解的方法和技巧

发布时间:2024-02-03 17:48:42

如何培养小学数学一题多解思维的

一题多解,就是启发和引导学生从不同角度、不同思路,不同的方位,运用不同的方法和不同的运算过程,解答同一道数学问题。教学中适当的一题多解,可以激发学生去发现和去创造的强烈欲望,加深学生对所学知识的深刻理解,训练学生对数学思想和数学方法的娴熟运用,锻炼学生思维的广阔性和深刻性、灵活性和独创性,从而培养学生的思维品质,发展学生的创造性思维。
一题多解对于五、六年级学生来说尤为重要,我们每位小学教师必须引为重视,搞好训练。
下面仅就多步应用题教学过程中的一题多解,初略地介绍一下基本做法:
一、进行一题多解的实际练习。
在实际教学中,一般采用以下两种方法:
1.一般的一题多解的练习。题目是由浅入深,由易到难。解法、时间、速度等要求逐步提高。
题1南北两城的铁路长 357公里,一列快车从北城开出,同时有一列慢车从南城开出,两车相向而行,经过3小时相遇,快车平均每小时行79公里,慢车平均每小时比快车少行多少公里?
解法1 、[357-(79×3)]÷3
=[357-237]÷3
=120÷3
=40(公里)
即慢车平均每小时行40公里,
已知快车平均每小时行79公里,
∴慢车平均每小时比快车少行多少公里就是
79-40=39(公里)
答:慢车平均每小时比快车少行39公里。
解法2、 79-(357÷3-79)
=79-(119-79)
=79-40
=39(公里)
答:(同上)
解法3 、设慢车平均每小时行x公里
79×3+3x=357
3x=357-237
3x=120
x=40(公里)
79-40=39(公里)
答:(同上)
……
2.看谁的解法多。我们知道,一题多解训练的目的,不是单纯地解题,而是为了培养和锻炼学生的思维,发展学生的智力,提高学生的解题能力。所以,在实际训练中,我们不能满足于学生会用几种一般的方法来分析解答应用题。如果只以一般的几种解法为满足,对学生通过多向思维求得的其他解法特别是一些较为复杂的解法不提倡,不鼓励,这样就会挫伤学生思维的积极性,影响学生的学习兴趣,不利于培养学生的创造能力。实践证明,学生的解法越多,表明学生的思维越灵活,思路越开阔。学生能够根据题意和数量关系,运用所学习和掌握的知识不拘泥、不守旧,乐于打破一般的框框去进行广阔的思维,十分用心地去探求各种解题方法,就越有利于促进其思维的发展,提高创造能力。我们就越应当给予肯定和鼓励。对于学生“别出心裁”、“独辟蹊径”的解题方法,要给以表扬和鼓励。这对激发学生的学习兴趣,调动一题多解的积极性是很有好处的。
例如:上面的题1,除了那三种解法之外,学生还想出以下十几种解法:
解法4、 设慢车平均每小时行x公里
(79+x)×3=357
237+3x=357
3x=357-237
3x=120
x=40(公里)
79-40=39(公里)
答:(同上)
解法5 、设慢车平均每小时行x公里
3x=357-79×3
解法6 、设慢车平均每小时行x公里
357-3x=79×3
解法7 、设慢车平均每小时行x公里
79+x=357÷3
解法8 、设慢车平均每小时行x公里
357÷3-x=79
解法9、 设慢车平均每小时比快车少行x公里
(79-x)×3+79×3=357
解法10 、设慢车平均每小时比快车少行x公里
(79-x+79)×3=357
解法11、 设慢车平均每小时比快车少行x公里
(79-x)×3=357-79×3
解法12、 设慢车平均每小时比快车少行x公里
357-(79-x)×3=79×3
解法13 、设慢车平均每小时比快车少行x公里
79+(79-x)=357÷3
解法14、 设慢车平均每小时比快车少行x公里
357÷3-(79-x)=79
解法15、 设慢车平均每小时比快车少行x公里
79-x=357÷3-79
一道应用题,学生能够想出这么多的解法,表明学生的思路很开阔,思维很灵活。智力发达的同学争先恐后,智力较差的同学也积极动脑。全班同学都进入积极的思维状态,互相启发,不甘落后,课堂气氛很活跃,学生的学习积极性都可以调动起来。
二、口述不同的解题思路和解题方法。
口述不同的解题思路和解题方法,就是只要求学生说出不同的(或叫新的)解题思路和解题方法,不用具体解答。它是进行一题多解实际练习的另一种形式。这种练习和前一种练习所不同的地方是:前一种练习偏重于学生动脑动手,进行一题多解的实际练习;这种练习偏重于学生动脑动口,寻求新的解题思路和不同的解题方法。简言之,前者是动脑动手,后者是动脑动口。进行这种训练,主要是为了使学生在单位时间内更多地、更好地认识和掌握应用题的多种解法,提高一题多解训练的课堂教学效率。
在实际教学中,这种练习一般是采取全班和分组两种形式交错进行。开始,全班同学一起,分别对某一道应用题口述不同的解题思路和解题方法,一人一次口述一种。然后分组进行,便于增加学生口述的机会,达到人人动脑,人人口述。这种练习的基本过程是:先全班后小组再全班。这样交错进行。好、差学生都有口述机会,达到共同提高的目的。
例: 两地相距383公里,甲乙两人从两地相向而行,甲先走1天,一共走5天才和乙相遇,已知每天甲比乙多走10公里,问甲乙两人每天各走多少公里?
口述1:甲走5天,乙仅走5-1=4(天)。假如甲每天比原来少行10公里,则与乙的速度相等。那么甲行5天,乙行4天,就相当于乙行5+4=9(天),这时两人还相距10×5=50(公里)。乙9天共行383-50=333(公里),乙每天走的就可以求出来了。乙每天走多少公里知道了,甲每天走的也就可以知道了。
口述2:甲行5天,乙行4天,假如乙每天比原来多行10公里,则与甲的速度相等。那么甲行5天,乙行4天,就相当于甲行5+4=9(天),这样两人所走的路程的和就要多出10×4=40(公里)。即甲9天共行383+40=423(公里),所以甲每天走的就可以求出来了。甲每天走的知道了,乙每天走的也就可以知道了。
口述3:除上述两种方法外,本题还可以用列方程来解。设甲每天行x公里,那么乙每天行的就是(x-10)公里,已知甲行5天,乙行4天,两地相距383公里,则可列出方程:
5x+4×(x-10)=383
解方程,就可以求出甲每天行多少公里,甲每天行的求出来了,乙每天行的也就可以求出来了。
本题也可以设乙每天行x公里,则甲每天行的就是(x+10)公里。已知甲行5天,乙行4天,两地相距383公里,则可列出方程:
(x+10)×5+4x=383
解方程,就可以求出乙每天行多少公里,乙每天行的求出来了,甲每天行的也就可以求出来了。
实践证明,口述不同的解题思路和解题方法,不仅可以促使学生积极动脑,努力探求应用题的多种解法,培养和锻炼学生的逻辑思维能力和语言表达能力,而且可以帮助学生在较短的时间内把应用题的多种不同解法都挖掘出来,这对学生更好地认识和掌握应用题的各种解法,提高分析解答应用题的能力和效率等都有重要作用。
三、引导学生自己找出最简便的解法。
引导学生自己找出最简便的解法,就是在上面两步练习的基础上,在学生求得多种解题方法之后,让他们自己去分析比较,可以相互讨论,也允许相互争论,让学生在分析比较,相互讨论、相互争论的过程中,找出最简便的解题方法。这一过程,就是一个继续思维的过程,也是一个对应用题的各种解法的再认识的过程。它是一题多解训练的一个不可忽视的环节。学生通过前面两步的训练,求得应用题的多种解法之后,解题思维不能到此完结,对各种解题方法的认识也不是非常深刻。学生求得的几种解题方法是否完全正确,分析解题的过程是否都很恰当,哪些是一般的解法,哪些是自己的创新,哪种解法简便等等,这些都要引导学生自己去进一步思维,进一步去认识。否则是对是错,是优是劣,是简是繁,学生都不知道,这样就不能达到提高学生解题能力的目的。只有通过引导学生自己对上述求得的各种解题方法进行逐一比较,展开热烈的讨论或争论,才能真正把握应用题的最简便的解题方法,才能进一步提高解答应用题的能力和效率。
例: 幸福小学原计划买12个篮球,每个72元,从买篮球的钱中先拿出432元买足球,剩下的钱还够买几个篮球?
解法1 、(72×12--432)÷72
=432÷72
=6(个)
答:剩下的钱还可以买6个篮球。
解法2、 12-432÷72
=12-6
=6(个)
答:(同上)
解法3 、设剩下的钱还可以买x个篮球
72x=12×72-432
72x=432
x=6
答:(同上)
解法4、 设剩下的钱还可以买x个篮球
72x+432=72×12
72x+432=864
72x=864-432
72x=432
x=6
答:(同上)
本题上述多种解法,思维分析过程不同,解法和运算过程也不同。解法1是一般的思维和一般的算术解法;解法3,4……是列方程的解法。解法2也是算术解法,但解题思路新,解答方法、解题过程简便。
当一个学生说出这个解题思路:“把拿出432元买足球的钱看作是少买了几个篮球的钱,再用计划买的12个篮球数减掉少买的篮球数所得的差,就是所求的答案。” 列出:12-432÷72这个式子,可以看出这位同学的解题思路独特又有新意,解题方法简便,解题过程简单。
实践证明,进行这种训练,让学生在比较、讨论、争论中,找出最简便的解法和独特的富有新意的解题思路,有利于加深学生对多种解题方法的认识,从而更熟练地把握应用题的多种分析解题方法。
一题多解训练,应当注意以下几点:
(1)目的要明确。上这种课,不是单纯地追求一题多解,而是要通过这种练习活动,达到锻炼学生的思维,拓宽学生的思路,增长学生的知识,培养和提高学生创造性学习能力这个根本目的。所以,教学内容的安排,教学活动的组织,教学方法的选择等等,都要有利于实现这个根本目的。这是上这种课的总要求。
(2)要注意把握上这种课的时间。这种课必须要在学生对有关的知识和技能熟练掌握的基础上进行。如果学生对有关的知识和技能没有熟练掌握,就谈不上灵活运用,就谈不上纵向、横向联系,也就不能进行一题多解。所以,上这种课,一般是在学生对某一部分知识或某几部分知识熟练掌握的时候,在综合练习时进行。学生对基础知识掌握得越深刻,越透彻;基本技能越娴熟,越灵活,就越能够进行一题多解,上这种课就越能收到好的效果。
(3)选题要得当,方法要灵活。选题得当是学生一题多解的前提条件。它既要能够一题多解,又要顾及班上差生、好生的具体情况,使差生想想也能找出几种解法,使好生也有用武之地;一题多解训练的具体方式方法是很多的,不能死搬硬套,人云亦云。要从实际出发,不能千题一律,堂堂如此。要根据班上学生学习的具体情况和实际教学需要,灵活选择教学方法。只有这样,才能调动全班学生的学习积极性,取得好的教学效果。

② 答题技巧的方法有哪些

期末考试临近,很多同学都感觉到了空前的学习压力。然而,最终考试成绩的取得一方面是对基础知识的掌握,另一方面就是考试中的技巧了。有的同学,平时学习成绩好,但在考试中往往出现发挥不佳的情况;另外,相当一部分同学总感觉考试时间不够用,也是缺乏应试技巧的表现。

01▶

自我暗示 消除焦虑

考试一旦怯场,面对试题就会头脑空空,平时熟悉的公式、定理回忆起来也变得困难,注意力不能集中,等到心情平静下来,已浪费了许多时间,看到许多未作的题目,则会再次紧张,形成恶性循环。这时要迅速进行心理调节,使自己快速进入正常应考状态,可采用以下两种方法调节焦虑情绪:

①自我暗示法。用平时自己考试中曾有优异成绩来不断暗示自己:我是考生中的佼佼者;我一定能考得理想的成绩;我虽然有困难的题目,但别人不会做的题目也很多。

②决战决胜法。视考场为考试的大敌,用过去因怯场而失败的教训鞭策自己决战决胜。

02▶

整体浏览 了解卷情

拿到试卷后,在规定的地方写好姓名和准考证号后,先对试卷进行整体感知,看看这份试卷共多少页、总题量是多少、分哪几大部分、有哪几种题型。这样不仅可以要防止试卷错误,尽早调换,避免不必要的损失;而且通过对全卷作的整体把握,能尽早定下作战方案。重要的是初步了解下试卷的难易度,以便自己合理安排答题时间,避免会做的没有做,不会做的却浪费了时间的情况出现。

03▶

两先两后 合理安排

试卷的难易、生熟占分高低大体心中有数了,情绪也稳定了,此时大脑里的思维状态由启动阶段进入亢奋阶段。只要听到铃声一响就可开始答题了。解题应注意“两先两后”的安排:

①先易后难。一般来说,一份成功的试卷,它上面的题目的排列应是由易到难的,但这是命题者的主观愿望,具体情况却因人而异。同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。

②先熟后生。通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。万一哪个题目偏难,也不要惊慌失措,而要冷静思考,变生为熟,想一想能不能把所谓的生题化解为若干个熟悉的小问题,或转化为熟悉的题型。总之要记住一句名言:“我易人易,我不大意;我难人难,我不畏难”。

04▶

一慢一快 慢中求快

一慢一快,指的是审题要慢要细,做题要快。题目本身是解题方法、技巧的信息源,特别是每卷必有的选择题中的题干中有许多解答该题的规定性。例如:选出完全正确的一项还是错误的一项,选一项还是两项等,这些一定要在读题时耐心地把它们读透,弄清要求,否则是在做无用功。考卷大多是容易的,在大家容易的情况下就看谁更细心,而细心最主要的就是审题时要慢要细心。

当找到解决问题的思路和方法后,答题时速度应快。做到这一点可从两方面入手,一、书写速度应快,不慢慢吞吞。二、书写的内容要简明扼要,不拖泥带水,噜嗦重复,尽量写出得分点就行了。

05▶

分段得分,每分必争

考试中经常有的同学答案是错误的,但依然得了分,这说明写出了得分点,而有的同学甚至一点解题思路都没有,只是将公式进行了罗列,也依然得到了分,都是同样的道理。尤其是有问的解答中,如果第一个不会千万不要放弃,一定要浏览完全部的问题,做到每分必争,切忌出现大量空题的情况。

对于会做的题目。对会做的题目要解决对而不全的老大难问题,如果出现跳步往往就会造成丢分的情况,因此,答题过程一定规范,重要步骤不可遗漏,这就是分段得分。

对于不会做的题目,这里又分两种情况,一种是一大题分几小题的,一种是一大题只有一问的。对于前者,我们的策略是“跳步解答”,第一小题答不出来,就把第一小题作为已知条件,用来解答第二小题,只要答得对,第二小题照样得分。对于后者,我们的策略是“缺步解题”,能演算到什么程度就什么程度,不强求结论。这样可以最大程度地得到分数。

06▶

重视检查环节

答题过程中,尽量立足于一次成功,不出差错。但百密不免一疏,如果自己的考试时间还有些充裕,那么根不可匆忙交卷,而应作耐心的复查。将模棱两可的及未做的题目最后要进行检查、作答,特别是填空题、选择题不要留空白。

③ 做数学题有何技巧方法

有一句话,人逼急了什么事都做的出来,但是数学题做不出来,尤其遇到难题就脑袋空空,毫无头绪。那么如何让数学题做起来变得容易和轻松呢?下面给大家分享一些关于做数学题有何技巧 方法 ,希望对大家有所帮助。

一.选择题答题攻略

1、剔除法

利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2、特殊值检验法

对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3、极端性原则

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4、顺推破-解法

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5、逆推验证法

将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6、正难则反法

从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7、数形结合法

由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8、递推归纳法

通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9、特征分析法

对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10、估值选择法

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

二.填空题答题攻略

数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

1、直接法

这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法

当填空题的结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。

3、数形结合法

借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

4、等价转化法

通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。


做数学题有何技巧方法相关 文章 :

★ 做数学选择题的十种技巧

★ 做数学的思路技巧方法

★ 做六年级数学题的学习方法和做题方法

★ 数学选择题答题的十大方法

★ 做好高考数学题的12种方法

★ 数学选择题八大解题方法

★ 做小学数学作业各类题型的方法

★ 学好数学方法和技巧是什么

★ 做数学蒙题的技巧

④ 初中数学解题技巧与方法

我在这里整理了初中数学常用的解题法和不同题型解题法,希望能帮助到大家。

初中数学常用解题法

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

不同题型的解题法

选择题:

在做选择题可运用各种解题的方法:如直接法、特殊值法、排除法、验证法、图解法、假设法、动手操作法(比如折一折,量一量等方法),对于选择题中有“或”的选项一定要警惕,看看要不要取舍。

填空题:

注意一题多解等特殊情况。

考虑各种简便方法解题。选择题、填空题更是如此(直接法最后考虑)尤其是选择题,有些可用排除法、特殊值法、画图像解答,不必每题都运算 。

解答题:

1.注意规范答题,过程和结论都要书写规范。认真审题,不慌不忙,先易后难,不能忽略 题目中的任何一个条件。

2.计算题一定要细心,最后答案要最简,要保证绝对正确。

3.先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入。

4.解直角三角形问题。注意交代辅助线的作法,解题步骤。关注直角、特殊角。取近似值时一定要按照题目要求。

5.实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。最后一定要检验方程的解。

6.证明题:切线证明要写出辅助线的作法,辅助线要用虚线;遇到线段比例式及乘积式,就要证线段所在的三角形相似,同时注意线段的等量代换(注意线段倍数关系)。

7.方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案。

8.若压轴题最后一问确实无从下手,可以放弃,不如把时间放在检验别的题目上,对于存在性问题,要注意可能有几种情况不要遗漏。对于动点问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况。

解各类大题目时脑子里必须反映出该题与平时做的哪道题类似,应反映出似曾相识,又非曾相识的感觉。

一解题方法归纳:1.配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2.因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法,在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3.换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4.判别式法与韦达定理

一元二次方程aX²+bX+c=0(a、b、c∈R,a≠0)根的判别式△=b²-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5.待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。

6.构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7.反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8.等(面或体)积法

平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法

用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9.几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10.客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

一通过实例介绍常用方法:(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

阅读全文

与学一题有解的方法和技巧相关的资料

热点内容
低年级语文识字教学方法结题报告 浏览:644
苹果7手机接入点在哪里设置方法 浏览:663
资产评估方法的选择有哪些 浏览:319
左手冰凉的治疗方法 浏览:609
父母教育子女的最佳方法 浏览:548
正确发声的方法视频 浏览:977
治疗心脑血管疾病方法 浏览:33
观赏鱼战争的原因和解决方法 浏览:601
自做生日蛋糕最简单的方法家庭版 浏览:749
手汗蒸的最佳方法 浏览:475
点菜宝系统使用方法 浏览:622
检验绦虫虫卵常用的检查方法 浏览:206
比例均匀的训练方法 浏览:757
硅锰合金锰的分析方法 浏览:126
薯仔做菜的最简单方法 浏览:870
活性炭法检测氡方法 浏览:889
如何提高数学成绩的最佳方法小学 浏览:125
干锅包菜制作方法怎么样烧才好吃 浏览:433
java如何根据传入参数调方法 浏览:521
用什么方法能缓解口舌干燥 浏览:81