Ⅰ 检测蛋白质的方法有哪些 检测蛋白质的方法介绍
1、凯氏定氮法
凯氏定氮法是测定化合物或混合物中总氮量的一种方法。即在有催化剂的条件下,用浓硫酸消化样品将有机氮都转变成无机铵盐,然后在碱性条件下将铵盐转化为氨,随水蒸气蒸馏出来并为过量的硼酸液吸收,再以标准盐酸滴定,就可计算出样品中的氮量。
由于蛋白质含氮量比较恒定,可由其氮量计算蛋白质含量,故此法是经典的蛋白质定量方法。
2、双缩脲法
双缩脲法是一个用于鉴定蛋白质的分析方法。双缩脲试剂是一个碱性的含铜试液,呈蓝色,由1%氢氧化钾、几滴1%硫酸铜和酒石酸钾钠配制。
当底物中含有肽键时(多肽),试液中的铜与多肽配位,配合物呈紫色。可通过比色法分析浓度,在紫外可见光谱中的波长为540nm。鉴定反应的灵敏度为5-160mg/ml。鉴定反应蛋白质单位1-10mg。
3、酚试剂法
取6支试管分别标号,前5支试管分别加入不同浓度的标准蛋白溶液,最后一支试管加待测蛋白质溶液,不加标准蛋白溶液,在室温下放置30分钟,以未加蛋白质溶液的第一支试管作为空白对照,于650nm波长处测定各管中溶液的吸光度值。
4、紫外吸收法
大多数蛋白质在280nm波长处有特征的最大吸收,这是由于蛋白质中有酪氨酸,色氨酸和苯丙氨酸存在,可用于测定0.1~0.5mg/mL含量的蛋白质溶液。
取9支试管分别标号,前8支试管分别加入不同浓度的标准蛋白溶液,1号试管不加标准蛋白溶液,最后一支试管加待测蛋白质溶液,而不加标准蛋白溶液,每支试管液体总量通过加入蒸馏水补足而保持一致,将液体混合均匀,在280nm波长处进行比色,记录吸光度值。
5、考马斯亮蓝法
考马斯亮蓝显色法的基本原理是根据蛋白质可与考马斯亮蓝G-250 定量结合。当考马斯亮蓝 G-250 与蛋白质结合后,其对可见光的最大吸收峰从 465nm 变为 595nm。
在考马斯亮蓝 G-250 过量且浓度恒定的情况下,当溶液中的蛋白质浓度不同时,就会有不同量的考马斯亮蓝 G-250 从吸收峰为 465nm 的形式转变成吸收峰为 595nm 的形式,而且这种转变有一定的数量关系。
一般情况,当溶液中的蛋白质浓度增加时,显色液在 595nm 处的吸光度基本能保持线性增加,因此可以用考马斯亮蓝 G-250 显色法来测定溶液中蛋白质的含量。
Ⅱ 测定蛋白质含量的方法有哪些
1、凯氏定氮法
凯氏定氮法是由丹麦化学家凯道尔于1833年建立的,现已发展为常量、微量、平微量凯氏定氮法以及自动定氮仪法等,是分析有机化合物含氮量的常用方法。
凯氏定氮法的理论基础是蛋白质中的含氮量通常占其总质量的16%左右(12%~一19%),因此,通过测定物质中的含氮量便可估算出物质中的总蛋白质含量(假设测定物质中的氮全来自蛋白质),即: 蛋白质含量=含氮量/16%。
2、紫外吸收光谱法
紫外吸收光谱法又称紫外分光光度法,是根据物质对不同波长的紫外线吸收程度不同而对物质组成进行分析的方法。此法所用仪器为紫外吸收分光光度计或紫外-可见吸收分光光度计。
光源发出的紫外光经光栅或棱镜分光后,分别通过样品溶液及参比溶液,再投射到光电倍增管上,经光电转换并放大后,由绘制的紫外吸收光谱可对物质进行定性分析。
(2)如何检测蛋白质的方法扩展阅读
蛋白质含量测定的意义:
膳食蛋白质符合人的需要时,可维持正常代谢,生成抗体,抵抗感染,有病也易恢复。相反,蛋白质供给不足时,会减轻体重,易患贫血,容易感染疾病;创伤、骨折不易愈合;严重缺乏时,血浆蛋白降低,可引起浮肿。
此外癌症与蛋白质摄入量不足也有一定关系。但是,蛋白质摄入过多也可造成肾脏负担。食物蛋白质在体内代谢所生成的尿酸、氨、酮体等累积过多,可导致衰老;而氨还对机体有毒性,不仅会陡然增加肝脏负担,还会增加胃肠负荷,引起肝肾受累以及消化不良等症。所以,蛋白质的摄入量要适当。
Ⅲ 鉴定蛋白质有哪些方法
蛋白质含量的测定:
1 凯氏定氮法
根据氮在蛋白质分子中含量恒定(平均占16%),因此测定出样品中氮的含量后,即可求出样品中蛋白质含量。
2 双缩脲法
3 福林-酚试剂法
福林-酚试剂包括两种试剂:碱性铜试剂,磷钼酸及磷钨酸的混合试剂。碱性铜试剂与蛋白质产生双缩脲反应。这种被作用的蛋白质中的酚基(酪氨酸),在碱性条件下易将磷钼酸和磷钨酸还原成蓝色的钼蓝和钨蓝,所生成蓝色的深浅,与蛋白质的含量成正比。在650nm和660nm波长下测定光吸收值,即可测定蛋白质含量。
4 紫外吸收法
酪氨酸,色氨酸在280nm处左右具有最大吸收。由于在各种蛋白质中这几种氨基酸含量差别不大,所以280nm的吸收值与浓度呈正相关。可用于蛋白质浓度的测定。
Ⅳ 鉴别蛋白质的方法有哪些
常见的蛋白质鉴定方法有:
一、最简单的方法就是对所要鉴定的物体进行灼烧
二、使用化学药剂进行化学反应来鉴定蛋白质
三、较为精准的方法是使用仪器进行蛋白质鉴定,如质谱仪等
在生物学研究中经常会遇到一些关于蛋白质鉴定的问题,如单一蛋白质或者简单混合物的鉴定;对单一蛋白质的序列分析等。这一类蛋白质鉴定,在精密度上要求较高,所以几乎都是采用质谱仪器,来对蛋白质进行精密鉴定。
质谱技术是鉴定蛋白质的其中一种平台技术。可用到的质谱仪有Thermo Fisher的Q Exactive质谱仪,LTQ Orbitrap Velos质谱仪,以及AB SCIEX的6500 Q TRAP质谱仪。所在鉴定机构的不同,在硬件品牌的使用上也会有不同。
蛋白质鉴定的流程一般分三大步:蛋白质提取、纯化、鉴定。这个流程是一个将蛋白质层层“解剖”的过程,从中我们可以对蛋白分子量进行测定,蛋白胶点、胶条、IP样品蛋白质进行鉴定,非变性质谱分析以及Pull-down靶蛋白质谱鉴定等,较为细致的去分析蛋白质中的各种物质、性质等。
Ⅳ 怎样鉴别一种食物中含有蛋白质
一般鉴别蛋白质的最简便方法分以下两种情况:
1、检验固体物质:最简便方法是火烧,闻其是否有烧焦羽毛的气味,有则含蛋白质,无则不含;
2、检验液体物质:最简便方法是加入适量食盐或身边易得的可溶性盐充分混合看其是否凝聚现象出现,有则含蛋白质,无则不含。
蛋白质的基本单位是氨基酸,氨基酸通过脱水缩合形成肽链。蛋白质由一条或多条多肽链组成的生物大分子,每一条多肽链有二十~数百个氨基酸残基不等;各种氨基酸残基按一定的顺序排列。产生蛋白质的细胞器是核糖体。
(5)如何检测蛋白质的方法扩展阅读:
如果想要做实验来证明食物当中含有蛋白质,那么应该加入某一些化学试剂。比如说加入一些试剂之后会呈现别的颜色。
蛋白质是由α-氨基酸按一定顺序结合形成一条多肽链,再由一条或一条以上的多肽链按照其特定方式结合而成的高分子化合物。蛋白质就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。
Ⅵ 蛋白质含量的测定方法
蛋白质含量的十种测定方法如下:
三、双缩脲法:
实验原理:双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。
紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1~10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。
四、BCA法:
实验原理:BCA检测法是Lowry测定法的一种改进方法。与Lowry方法相比,BCA法的操作更简单,试剂更加稳定,几乎没有干扰物质的影响,灵敏度更高(微量检测可达到0.5μg/ml),应用更加灵活。蛋白质分子中的肽键在碱性条件下能与Cu2+络合生成络合物,同时将Cu2+还原成Cu+。
二喹啉甲酸及其钠盐是一种溶于水的化合物,在碱性条件下,可以和Cu+结合生成深紫色的化合物,这种稳定的化合物在562nm处具有强吸收值,并且化合物颜色的深浅与蛋白质的浓度成正比。故可用比色的方法确定蛋白质的含量。
五、Lowry法:
实验原理:蛋白质在碱性溶液中其肽键与Cu2+螯合,形成蛋白质一铜复合物,此复合物使酚试剂的磷钼酸还原,产生蓝色化合物,在一定条件下,利用蓝色深浅与蛋白质浓度的线性关系作标准曲线并测定样品中蛋白质的浓度。
六、考马斯亮蓝法:
实验原理:考马斯亮蓝法测定蛋白质浓度,是利用蛋白质―染料结合的原理,定量的测定微量蛋白浓度的快速、灵敏的方法。考马斯亮蓝G―250存在着两种不同的颜色形式,红色和蓝色。它和蛋白质通过范德华力结合,在一定蛋白质浓度范围内,蛋白质和染料结合符合比尔定律。
此染料与蛋白质结合后颜色有红色形式和蓝色形式,最大光吸收由465nm变成595nm,通过测定595nm处光吸收的增加量可知与其结合蛋白质的量。蛋白质和染料结合是一个很快的过程,约2min即可反应完全,呈现最大光吸收,并可稳定1h,之后,蛋白质―染料复合物发生聚合并沉淀出来。
七、凯氏定氮法:
实验原理:凯氏定氮法用于测定有机物的含氮量,若蛋白质的含氮量已知时,则可用此法测定样品中蛋白质的含量。当蛋白质与浓硫酸共热时,其中的碳、氢两元素被氧化成二氧化碳和水,而氮则转变成氨,并进一步与硫酸作用生成硫酸铵。此过程通常称为“消化”。
但是,这个反应进行得比较缓慢,通常需要加入硫酸钾或硫酸钠以提高反应液的沸点,并加入硫酸铜作为催化剂,以促进反应的进行。
八、Lowry法测定试剂盒:
Folin酚试剂法包括两步反应:第一步是在碱性条件下,蛋白质与铜作用生成蛋白质-铜络合物;第二步是此络合物将Folin试剂还原,产生深蓝色,颜色深浅与蛋白质含量成正比。定量范围为5~100μg/ml蛋白质。Folin试剂显色反应由酪氨酸、色氨酸和半胱氨酸引起,因此样品中若含有酚类、柠檬酸和巯基化合物均有干扰作用。
此外,不同蛋白质因酪氨酸、色氨酸含量不同而使显色强度稍有不同。
九、BCA法测定试剂盒:
碱性条件下,蛋白将Cu2+还原为Cu+,Cu+与BCA试剂形成紫颜色的络合物,测定其在562nm处的吸收值,并与标准曲线对比,即可计算待测蛋白的浓度。常用浓度的去垢剂SDS,TritonX-100,Tween不影响检测结果,但受螯合剂(EDTA,EGTA)、还原剂(DTT,巯基乙醇)和脂类的影响。
实验中,若发现样品稀释液或裂解液本身背景值较高,可试用Bradford蛋白浓度测定试剂盒。
十、分光光度计法。
1、取八支(或者更多)干净的10ml离心管,标记上号。
2、取100ulBSA,加PBS2.4ml稀释至终浓度为0.2mg/ml。
3、5×G250染色液使用前请颠倒3-5次混匀,取10ml5×G250染色液,加入40ml双蒸水,混匀成1×G250染色液,此1×G250染色液可在4℃保存一周。
4、按下表加入试剂(以每孔5ml计,多余的用来清洗比色皿)。
Ⅶ 蛋白质含量的测定方法有哪些
蛋白质含量测定的方法有微量凯氏定氮法、双缩脲法、folin―酚试剂法、考马斯亮兰法、紫外吸收法等。
1、微量凯氏定氮法:含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸铵。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。
2、双缩脲法:双缩脲是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。
3、folin―酚试剂法:这种蛋白质测定法是最灵敏的方法之一。过去此法是应用最广泛的一种方法,由于其试剂乙的配制较为困难,近年来逐渐被考马斯亮兰法所取代。
4、考马斯亮兰法:1976年由bradford建立的考马斯亮兰法,是根据蛋白质与染料相结合的原理设计的。这一方法是目前灵敏度最高的蛋白质测定法。
5、紫外吸收法:蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。
Ⅷ 蛋白质的测定方法
测定蛋白质含量的方法有凯氏定氮法、双缩脲法、考马斯亮蓝法等。
2、双缩脲法:是一种用于鉴定蛋白质的分析方法。双缩脲试剂呈蓝色,是一种碱性含铜测试溶液,它由几滴1%硫酸铜,1%氢氧化钾和燃握敬酒石酸钾钠制成。
3、考马斯亮蓝法:基本原理是基于蛋白质可以与考马斯亮蓝G-250定量结合。