❶ 简便计算方法
常用的简便算法有以下几种
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
例1
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
例2
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
例3
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
例4
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
例5
计算:16×25×25
因为4×25=100,而16=4×4,由此可将两个4分别与两个25相乘,即原式可转化为:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道题目中,利用第一种方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等于5100加上2200等于6300
乘法公式:因数x因数=积;积÷因数=因数。除法公式:被除数÷除数=商;商x除数=被除数;被除数÷商=除数。乘除法运算法则:1、同级运算时,物键从左到右依次计算。2、两级运算时,先算乘除,后算加减。3、有括号时,先算括桐蚂尺号里面的,再算括号外面的。4、有多层括号时,先算小括号里的,再算中括号里面的,再算大括号里面的,最后算括号外面的。乘法是指将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。整数(包括负数)、有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。乘法也可以被视为计算排列在矩形(整数)中的对象或查找其边长度给定的矩形的区域。矩形的区域不取决于首先测量哪一侧,这说明了交换属性。两种测量的产物是一种新型的测量,例如,将矩形的两边的长度相乘给出其面积,这是尺寸分析的主题。除法是四则运算之一。已知两个因数的积与其中一个非零因数,求局高另一个因数的运算叫做除法。两个数相除又叫做两个数的比。若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c÷b,读作c除以b(或b除c)。其中c叫做被除数,b叫做除数,运算的结果a叫做商。