导航:首页 > 方法技巧 > 数学解题的技巧和方法

数学解题的技巧和方法

发布时间:2023-09-13 13:41:43

1. 大学数学九大解题技巧

解题是深化知识、发展智力、提高能力的重要手段。下面我给你分享大学数学九大解题技巧,欢迎阅读。

大学数学九大解题技巧

1、配法

通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的.方法,称为面积方法,它是几何中的一种常用方法

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

8、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

9、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

大学数学答题策略

一、学会审题,才会解题

很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。

考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。

二、先做简单题,后做难题

从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。

如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的经验告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。最好还有善于把难题转换成简单的题目的能力。

三、多做练习,提升能力

整体而言高考数学要想考好,一定要做大量的练习,要有扎实的理论基础,在此基础上辅以做题技巧,才不会出现考试时间不够用,自己会做的题最后没时间做,得不偿失。就要求我们在大量的练习的基础上,认真总结方程的思想,数形结合的思想,函数的思想等等,掌握各种类型题目的规律。

我们还要求考生不但会做题还要准确快速地解答出来通过练习掌握解题技巧,利用解题技巧快速解题,通过多做练习,做到熟能生巧,这才是我们练习的目的。做题还要集中注意力,这是是考试成功的保证。有时精神紧张,会做的题也会变的不会做,平时要有针对性的训练一些难题,有益于积极思维,树立信心。

因此,对于大部分高考生来说,平时加强训练,养成准确的解题习惯,熟练掌握解题技巧是非常有必要的。

四、会做的题保证做对

这一点很重要,实践中发现,考试我们会做的题丢分率是百分之十,也就是说由于大意每次考试大家都要丢掉这么多的分,怎么将你的解题策略转化为得分点,虽然解题思路正确甚至很巧妙,但是最后可能做不对,这一点往往被一些考生所忽视,但是由于不善于把图形语言变成自己理解的语言,因此卷面上出现大量会又做不对的情况,我们自己的估分和得分相差甚远。如立体几何论证中的跳步,大总分人会丢掉三分之一以上的分数,代数论证中,得分更是少 的可怜。所心我们要边做边检查解题思路正确与否,做完后认真核对。不仅把题目做完,更要保证准确率,会做的一定要保证做对,要能得到分。

2. 数学解决问题的技巧和方法

数学解决问题的技巧和方法:(以小学数学为例)


多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。

读题有利于学生对问题的理解,有助于通过语言描述看到问题解决的契机。对于问题意义表征受阻的学困生,有必要指导他们从“指读”(用笔尖指着题目,眼睛看着所指的文字读)开始,逐步养成边读边思考,反复读几遍,直至读懂的习惯。

进一步,还可以指导他们划出题中已知的数学信息和所求问题,并在句中圈出关键词。

把“大数”化“小”。

例如,"一本书共369页,平均每天看41页,多少天看完?"对有困难的学生,只要将原题改为:"一本书24 页,平均每天看8 页,多少天看完?"他们往往能脱口而出“3天”。

再用“小步子”进行追问:用什么方法算?怎样列式?为什么这样列式?这两题有什么相同和不同?从而使学生领悟到,两题都是求一个数里面有几个几。

联系生活,想象情境。

让学生想象自己是问题中的“小明”,进入情境,想象自己拿着20元钱去买票。从而增强学生身临其境的感受,有助于解决问题。以上三条策略,其实就是过去的读题、审题策略,现在依然非常实用。

列表、画图。

表、图具有直观形象的特点,可以帮助学生简洁、明了、正确地表征问题,提高解决问题的能力。在用比例知识解决正反比例的问题时,学困生往往不清楚量与量之间的对应关系。可以引导学生列表来帮助理解。

3. 做数学题有何技巧方法

数学应用问题较好地考察了学生阅读理解能力与日常生活体验,同时又考察了学生获取信息后的抽象概括与建模能力,判断决策能力。那么接下来给大家分享一些关于做数学题有何技巧 方法 ,希望对大家有所帮助。

做数学题有何技巧方法

1. 观察与实验

( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。

( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。

2. 比较与分类

( 1 )比较法

是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

( 2 )分类的方法

分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

3 .特殊与一般

( 1 )特殊化的方法

特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。

( 2 )一般化的方法

4. 联想与猜想

( 1 )类比联想

类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。

通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:

( 2 )归纳猜想

牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。

归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。

5. 换元与配方

( 1 )换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。

( 2 )配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,将这个公式灵活运用,可得到各种基本配方形式

6. 构造法与待定系数法

( 1 )构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。

( 2 )待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

7. 公式法与反证法

( 1 )公式法

利用公式解决问题的方法。初中最常用的有一元二次方程求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:

( 2 )反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。

中学数学新题型解题方法和技巧

1. 数学探索题

所谓探索题就是从问题给定的题设条件中探究其相应的结论并加以证明,或从给定的题目要求中探究相应的必需具备的条件、解决问题的途径。

条件探索题:解答策略之一是将题设和结论视为已知,同时推理,在演绎的过程中寻找出相应所需的条件。

结论探索题:通常指结论不确定不唯一,或结论需通过类比、引申、推广,或给出特例需通过归纳得出一般结论。可以先猜测再去证明;也可以寻求具体情况下的结论再证明;或直接演绎推证。

规律探索题:实际就是探索多种解决问题的途径,制定多种解题的策略。

活动型探索题:让学生参与一定的 社会实践 ,在课内和课外的活动中,通过探究完成问题解决。

推广型探索题:将一个简单的问题,加以推广,可产生新的结论,在初中教学中常见。如平行四边形的判定,就可以产生许多新的推广,一方面是自身的推广,一方面可以延伸到菱形和正方形中。

探索是数学的生命线,解探索题是一种富有创造性的思维活动,一种数学形式的探索绝不是单一的 思维方式 的结果,而是多种思维方式的联系和渗透,这样可使学生在学习数学的过程中敢于质疑、提问、 反思 、推广。通过探索去经历数学发现、数学探究、数学创造的过程,体会创造带来的快乐。

2. 数学情境题

情境题是以一段生活实际、 故事 、历史、游戏与数学问题、数学思想和方法于情境中。这类问题往往生动有趣,激发学生强烈的研究动机,但同时数学情景题又有信息量大,开放性强的特点,因此需要学生能从场景中提炼出数学问题,同时经历了借助数学知识研究实际问题的数学化过程。

如老师在讲有理数的混合运算时,

3. 数学开放题

数学开放题是相对于传统的封闭题而言的一种新题型,其特征是题目的条件不充分,或没有确定的结论,也正因为这样,所以开放题的解题策略往往也是多种多样的。

( 1 )数学开放题一般具有下列特征

①不确定性:所提的问题常常是不确定的和一般性的,其背景情况也是用一般词语来描述的,因此需收集其他必要的信息,才能着手解的题目。

②探究性:没有现成的解题模式,有些答案可能易于直觉地被发现,但是求解过程中往往需要从多个角度进行思考和探索。

③非完备性:有些问题的答案是不确定的,存在着多样的解答,但重要的还不是答案本身的多样性,而在于寻求解答的过程中学生的认知结构的重建。

④发散性:在求解过程中往往可以引出新的问题,或将问题加以推广,找出更一般、更概括性的结论。常常通过实际问题提出,学生必须用数学语言将其数学化,也就是建立数学模型。

⑤发展性:能激起多数学生的好奇性,全体学生都可以参与解答过程。

⑥创新性:教师难以用注入式进行教学,学生能自然地主动参与,教师在解题过程中的地位是示范者、启发者、鼓励者、合作者。

( 2 )对数学开放题的分类

从构成数学题系统的四要素(条件、依据、方法、结论)出发,定性地可分成四类;如果寻求的答案是数学题的条件,则称为条件开放题;如果寻求的答案是依据或方法,则称为策略开放题;如果寻求的答案是结论,则称为结论开放题;如果数学题的条件、解题策略或结论都要求解题者在给定的情境中自行设定与寻找,则称为综合开放题。

从学生的学习生活和熟悉的事物中收集材料,设计成各种形式的数学开放性问题,意在开放学生的思路,开放学生潜在的学习能力,开放性数学问题给不同层次的学生学好数学创设了机会,多种解题策略的应用,有力地发展了学生的 创新思维 ,培养了学生的创新技能,提高了学生的创新能力。

( 3 )以数学开放题为载体的教学特征

①师生关系开放:教师与学生成为问题解决的共同合作者和研究者

②教学内容开放:开放题往往条件不完全、或结论不完全,需要收集信息加以分析和研究,给数学留下了创新的空间。

③教学过程的开放性:由于研究的内容的开放性可以激起学生的好奇心、同时由于问题的开放性,就没有现成的解题模式,因此就会留下想象的空间,使所有的学生都可参与想象和解答。

( 4 )开放题的 教育 价值

有利于培养学生良好的思维品质;

有助于学生主体意识的形成;

有利于全体学生的参与,实现教学的民主性和合作性;

有利于学生体验成功、树立信心,增强学习的兴趣;

有助于提高学生解决问题的能力。

4. 数学建模题(初中数学建模题也可以看作是数学应用题)

数学新课程标准指出 : 要学生会应用所学知识解决实际问题 , 能适应社会日常生活和生产劳动的基本需要。初中数学的学习目的之一 , 就是培养学生解决实际问题的能力 , 要求学生会分析和解决生产、生活中的数学问题 , 形成善于应用数学的意识和能力。从各省市的中考数学命题来看 , 也更关注学生灵活运用数学知识解决实际问题能力的考查 , 可以说培养学生解答应用题的能力是使学生能够运用所学数学知识解决实际问题的基本途径之一

数学思想方法在解题中有不可忽视的作用

1. 函数与方程的思想

函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2. 数形结合的思想

数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。

3. 分类讨论的思想

分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:类型 1 :由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型 2 :由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型 3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型 4 :由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。类型 5 :由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分类标准;③按所分类别进行讨论;④归纳小结、综合得出结论。注意动态问题一定要先画动态图。

4 .转化与化归的思想

转化与化归市中学数学最基本的数学思想之一,数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

常见的转化方法有

( 1 )直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题

( 2 )换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题 . ?

( 3 )数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径 . ?

( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的 . ?

( 5 )特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题 .

( 6 )构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题 .

( 7 )坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径

转化与化归的指导思想?

( 1 )把什么问题进行转化,即化归对象 . ?

( 2 )化归到何处去,即化归目标 . ?

( 3 )如何进行化归,即化归方法 . ?

化归与转化思想是一切数学思想方法的核心 .


做数学题有何技巧方法相关 文章 :

★ 做数学选择题的十种技巧

★ 做六年级数学题的学习方法和做题方法

★ 做数学题的解题技巧方法高考

★ 做小学数学作业各类题型的方法

★ 学好数学的方法和技巧有哪些

★ 学好数学方法和技巧是什么

★ 做数学蒙题的技巧

★ 做数学选择题的技巧

★ 数学选择题八大解题方法

4. 最全最数学解题方法

最全最实用的数学解题方法

“考考考”,老师的法宝;"分分分”,学生的命根。快期末了,看看这些解题方法,你都掌握了吗?

(一) 选择题

对选择题的审题,主要应清楚:是选择正确还是选择错误?答案写在什么地方,等等。

做选择题有三种基本方法:

1、直接解答法。根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。

2、排除法。把选项中错误中答案排除,余下的便是正确答案。

3、 猜测法。这里可不是让你拿橡皮掷筛子哦,而是根据你所学的知识,合理推测。例如,让你求椭圆的离心率,选项有4个,其中两个大于1,两个在0~1之间,那肯定不能选择大于1的选项。(不知道为什么的,赶紧面壁去吧)

(二) 应用性问题的审题和解题技巧

解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。

(三) 最值和定值问题的审题和解题技巧

最值和定值是变量在变化过程中的两个特定状态。

最值着眼于变量的最大/小值以及取得最大/小值的条件;

定值着眼于变量在变化过程中的某个不变量。

近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。分析和解决最值问题和定值问题的思路和方法也是多种多样的。命制最值问题和定值问题能较好体现数学高考试题的命题原则。应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。

(四) 计算证明题

解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。在做这种题时,有一些共同问题需要注意:

1 注意完成题目的全部要求,不要遗漏了应该解答的内容。

2 在平时练习中要养成规范答题的习惯。

3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。

4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。

5 保证计算的准确性,注意物理单位的变换。

(五) 参数问题的审题和解题技巧参数问题

参数兼有常数和变数的双重特征,是数学中的“活泼”元素,曲线的参数方程,含参数的曲线方程,含参变系数的函数式、方程、不等式等,都与参数有关。

函数图象与几何图形的各种变换也与参数有关,有的探究性问题也与参数有关。参数具有很强的“亲和力”,能广泛选用知识载体,能有效考查数形结合、分类讨论、运动变换等数学思想方法。

应对参数问题要把握好两个环节,一是搞清楚参数的意义几何意义、物理意义、实际意义等,特别是具有几何意义的参数,一定要运用数形结合的思想方法处理好图形的几何特征与相应的数量关系的相互联系及相互转换。二是要重视参数的取值的讨论,或是用待定系数法确定参数的值,或是用不等式的变换确定参数的取值范围。

(六) 代数证明题的审题和解题技巧代数证明题

近几年的数学高考注意控制立体几何试题的难度,推理论证能力的考查重点转移到代数与解析几何特别是代数证明题。函数的性质及相关函数的证明题;数列的性质及相关数列的'证明题;不等式的证明题,尤其是与函数或数列相综合的不等式的证明题等,都频频出现在近几年的数学高考试题之中。

应对代数证明题,一是要全面审视各相关因素的关系,注意题目的整体结构;二是要完整、准确表述推理论证的过程,对于具有几何意义的代数证明题,要妥善处理几何直观、数式变换及推理论证的关系,注意防止简单运用“如图可知”替代推理论证。

(七) 探究性题的审题和解题技巧

近几年的数学高考贯彻了“多考一点想,少考一点算”的命题意图,加大试题的思维量,控制试题的运算量,突出对数学的“核心能力”——思维能力的考查。有些试题设计了新颖的情景,有些试题设计了灵活的设问方式,有些试题设计了新的题型结构如存在性问题;发现结论且证明结论的问题;寻求并证明充分条件或必要条件的问题等 ,这样的试题有助于克服死记硬背和机械照搬,优化考查功能。

应对探究性问题要审慎处理“阅读理解”和“整体设计”两个环节,首先要把题目读懂,全面、准确把握题目提供的所有信息和题目提出的所有要求,在此基础上分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,再落笔解题。在思维受阻时,及时调整解题方案。切忌一知半解就动手解题。

;

5. 高考数学常考题型答题技巧与方法有哪些

高考像漫漫人生路上的一道坎,无论成败与否,我认为现在都不重要了,重要的是要 总结 高考的得与失,以便在今后的人生之路上迈好每一个坎!下面就是我给大家带来的高考数学常考题型答题技巧与 方法 ,希望大家喜欢!

高考数学常考题型答题技巧与方法

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0两种情况为或型

②配成平方型:

(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。即:

9、观察法

10、代数式求值

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

方程中除过未知数以外,含有的 其它 字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

12、恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14、平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域图像在X轴上对应的部分

值域图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像点处有值,图像最低点处有最小值

奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

方程的根

函数图像与x轴交点横坐标

不等式解集端点

17、一元二次不等式的解法

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

判别且求根

画出示意图

解集横轴中

18、一元二次方程根的讨论

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

二次函数图像

不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19、基本函数在区间上的值域

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

(1)定义域没有特别限制时---记忆法或结论法;

(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

截出一断

得出结论

20、最值型应用题的解法

应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量

列函数

求最值

写结论

21、穿线法

穿线法是解高次不等式和分式不等式的方法。其一般思路是:

首项化正

求根标根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

高考数学常考题型答题技巧与方法有哪些相关 文章 :

1. 2019高考数学选择题万能答题技巧及方法

2. 高中数学常考题型答题技巧与方法及顺口溜

3. 高考数学必考题型以及题型分析

4. 高考数学选择题答题技巧有哪些

5. 2017高考数学常考的题型总结

6. 2017高考常考数学题型归纳

7. 高考数学答题技巧及复习方法

8. 高考数学不同题型的答题技巧

9. 高考数学的核心考点及答题技巧方法


6. 初中数学解题技巧与方法

我在这里整理了初中数学常用的解题法和不同题型解题法,希望能帮助到大家。

初中数学常用解题法

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

不同题型的解题法

选择题:

在做选择题可运用各种解题的方法:如直接法、特殊值法、排除法、验证法、图解法、假设法、动手操作法(比如折一折,量一量等方法),对于选择题中有“或”的选项一定要警惕,看看要不要取舍。

填空题:

注意一题多解等特殊情况。

考虑各种简便方法解题。选择题、填空题更是如此(直接法最后考虑)尤其是选择题,有些可用排除法、特殊值法、画图像解答,不必每题都运算 。

解答题:

1.注意规范答题,过程和结论都要书写规范。认真审题,不慌不忙,先易后难,不能忽略 题目中的任何一个条件。

2.计算题一定要细心,最后答案要最简,要保证绝对正确。

3.先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入。

4.解直角三角形问题。注意交代辅助线的作法,解题步骤。关注直角、特殊角。取近似值时一定要按照题目要求。

5.实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。最后一定要检验方程的解。

6.证明题:切线证明要写出辅助线的作法,辅助线要用虚线;遇到线段比例式及乘积式,就要证线段所在的三角形相似,同时注意线段的等量代换(注意线段倍数关系)。

7.方案设计题:要看清楚题目的设计要求,设计时考虑满足要求的最简方案,不要考虑复杂、追求美观的方案。

8.若压轴题最后一问确实无从下手,可以放弃,不如把时间放在检验别的题目上,对于存在性问题,要注意可能有几种情况不要遗漏。对于动点问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况。

解各类大题目时脑子里必须反映出该题与平时做的哪道题类似,应反映出似曾相识,又非曾相识的感觉。

一解题方法归纳:1.配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2.因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法,在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3.换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4.判别式法与韦达定理

一元二次方程aX²+bX+c=0(a、b、c∈R,a≠0)根的判别式△=b²-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5.待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。

6.构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7.反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8.等(面或体)积法

平面(立体)几何中讲的面积(体积)公式以及由面积(体积)公式推出的与面积(体积)计算有关的性质定理,不仅可用于计算面积(体积),而且用它来证明(计算)几何题有时会收到事半功倍的效果。运用面积(体积)关系来证明或计算几何题的方法,称为等(面或体)积法,它是几何中的一种常用方法。

用归纳法或分析法证明几何题,其困难在添置辅助线。等(面或体)积法的特点是把已知和未知各量用面积(体积)公式联系起来,通过运算达到求证的结果。所以用等(面或体)积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9.几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10.客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

一通过实例介绍常用方法:(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

7. 数学做题的方法及技巧

数学做题的方法及技巧

数学做题的方法及技巧,数学一直都是令许多学生头疼的科目,在考试中我们只能尽量做到不会做的题目也能得分,甚至蒙出正确的答案,只要掌握一定的数学答题技巧,也是有可能实现的,接下来一起看看数学做题的方法及技巧。

数学做题的方法及技巧1

一、熟悉习题中所涉及的内容,包括定义、公式、定理和规则。

解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

二、熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。

有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。

这时,我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。

三、熟悉基本的解题步骤和解题方法。

解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。

数学做题的方法及技巧2

选择题蒙法

1、选择题出现数值的选项中,含最多相同数值的选项为正确答案。如四个选项:A、3 B、3/11 C、3/13 D、2/11。“3”和“11”出现的次数最多,故选选项B。

2、选择题出现数值的选项中,数值最大的和数值最小的一般不是正确选项,答案从中间数值的两个选项中选。

3、选择题出现正负数值的选项中,答案必定是那两个选项的其中之一。

4、选择题中,若出现概念题。如果有课外的或是课内很少见的说法,一般都是正确的说法。

5、选择题,不会连续出现3个相同的答案。一般而言,选项A出现的概率最低。而且,第一题和最后一题一般不为选项A,最后两道题多为选项B和选项C。

填空题蒙法

1、如果出现求长度或者求角度的选择题,并且试卷上有图像的。可以直接用刻度尺或者量角器去衡量。

2、有关线性规划的选择题,不用画图,直接计算。用时更短,准确率更高!

3、遇上求数值、实在不会做的选择题。如果明显是整数答案的,可以选写“0、1、-1”中的其中一个数值;如果明显是分数答案的.,可以选写“1/2、1/3、2/3”中的其中一个数值;如果明显是含根号值数答案的,可以选写“根号2、根号3“等简单的数值。

4、一般来说,题目复杂难懂的,答案的数值往往是很简单的。反之就是比较复杂的。

解答题蒙法

1,证明题中,如果有某一个结论实在不知道怎么推导出来,可以把题目中所有的条件抄一遍,然后直接写出你想要的结论即可(情况好的话一分不扣!情况不好的话,也就扣一些步骤分)

2,证明题中,第二第三题可以直接引用第一题的结论(即使第一题是要你证明的结论,你没有证明出来也可以用!)

3、一般而言,压轴题的第三小问,都要用第一小题中的结论。(所以,压轴题的第三小问,即使做不出来,也要把第一小题中的结论写上去,可以得一到两分的步骤分!)

4、空间几何证明题中,即使不会证明,也要建立空间直角坐标系,并写上你建系时的套话。

5、实在一点儿都不会做的题目,把所有你觉得用得上的、跟本题有关的公式定理都写上去。并且,每一小题都要重复写上(意思就是:第一小题写了,第二、第三小题也要写!)

数学做题的方法及技巧3

数学答题技巧

1.适用条件

[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个)

(1)若f(x)=-f(x+k),则T=2k;

(2)若f(x)=m/(x+k)(m不为0),则T=2k;

(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b。周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下

(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2

(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;

(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

4.函数奇偶性

(1)对于属于R上的奇函数有f(0)=0;

(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

(3)奇偶性作用不大,一般用于选择填空

5.数列爆强定律

(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);

(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立

(4)等比数列爆强公式:S(n+m)=S(m)+qmS(n)可以迅速求q

6.数列的终极利器,特征根方程

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),

a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p(n-1)+x,这是一阶特征根方程的运用。

二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

8. 做数学题有何技巧方法

有一句话,人逼急了什么事都做的出来,但是数学题做不出来,尤其遇到难题就脑袋空空,毫无头绪。那么如何让数学题做起来变得容易和轻松呢?下面给大家分享一些关于做数学题有何技巧 方法 ,希望对大家有所帮助。

一.选择题答题攻略

1、剔除法

利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

2、特殊值检验法

对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

3、极端性原则

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

4、顺推破-解法

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

5、逆推验证法

将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

6、正难则反法

从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

7、数形结合法

由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8、递推归纳法

通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

9、特征分析法

对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

10、估值选择法

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

二.填空题答题攻略

数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

1、直接法

这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。

2、特殊化法

当填空题的结论唯一或其值为定值时,我们只须把题中的参变量用特殊值(或特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型等)代替之,即可得到结论。

3、数形结合法

借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。

4、等价转化法

通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。


做数学题有何技巧方法相关 文章 :

★ 做数学选择题的十种技巧

★ 做数学的思路技巧方法

★ 做六年级数学题的学习方法和做题方法

★ 数学选择题答题的十大方法

★ 做好高考数学题的12种方法

★ 数学选择题八大解题方法

★ 做小学数学作业各类题型的方法

★ 学好数学方法和技巧是什么

★ 做数学蒙题的技巧

阅读全文

与数学解题的技巧和方法相关的资料

热点内容
构造哈希表最常用的方法 浏览:296
紫金红葫芦的鉴别方法 浏览:615
二灰稳定砂砾压实度检测方法 浏览:71
万用表测针脚电压方法和步骤 浏览:338
物理学研究中最常用的方法 浏览:554
喝醉酒肚子疼怎么办最快的方法 浏览:456
小孩有哪些简单学习方法 浏览:89
治疗热感冒最好方法 浏览:165
岁月催白发的最佳方法 浏览:200
怎么写水饺的材料和制作方法 浏览:682
外墙面积计算方法 浏览:400
atom2手机稳定器使用方法 浏览:478
有哪些治疗噪声的方法 浏览:44
在实验中应用了什么物理研究方法 浏览:668
乙状结肠冗长有哪些诊断方法 浏览:532
工程数学计算方法 浏览:110
平板电脑office365永久激活方法 浏览:353
科普方法有哪些 浏览:887
2根塑铜线的连接方法 浏览:440
大鱼海棠纸尿裤穿戴方法视频 浏览:851