导航:首页 > 方法技巧 > 对异常数据如何采用插值的方法

对异常数据如何采用插值的方法

发布时间:2023-09-07 14:36:26

A. 插值法的原理是什么怎么计算

“插值法”的原理是根据比例关系建立一个方程,然后,解方程计算得出所要求的数据,

计算举例:假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。

(1)对异常数据如何采用插值的方法扩展阅读

Hermite插值是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的,其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值求一个2n+1次多项式H2n+1(x)满足插值条件:

H2n+1(xk)=yk

H'2n+1(xk)=y'k k=0,1,2,……,n ⒀

如上求出的H2n+1(x)称为2n+1次Hermite插值函数,它与被插函数一般有更好的密合度。

★基本思想

利用Lagrange插值函数的构造方法,先设定函数形式,再利用插值条件⒀求出插值函数。

参考资料:插值法_网络

B. 几种GIS空间插值方法

GIS空间插值方法如下:

1、IDW

IDW是一种常用而简便的空间插值方法,它以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本点赋予的权重越大。 设平面上分布一系列离散点,已知其坐标和值为Xi,Yi, Zi (i =1,2,…,n)通过距离加权值求z点值。

IDW通过对邻近区域的每个采样点值平均运算获得内插单元。这一方法要求离散点均匀分布,并且密度程度足以满足在分析中反映局部表面变化。

2、克里金插值

克里金法(Kriging)是依据协方差函数对随机过程/随机场进行空间建模和预测(插值)的回归算法。

在特定的随机过程,例如固有平稳过程中,克里金法能够给出最优线性无偏估计(Best Linear Unbiased Prediction,BLUP),因此在地统计学中也被称为空间最优无偏估计器(spatial BLUP)。

对克里金法的研究可以追溯至二十世纪60年代,其算法原型被称为普通克里金(Ordinary Kriging, OK),常见的改进算法包括泛克里金(Universal Kriging, UK)、协同克里金(Co-Kriging, CK)和析取克里金(Disjunctive Kriging, DK);克里金法能够与其它模型组成混合算法。

3、Natural Neighbour法

原理是构建voronoi多边形,也就是泰森多边形。首先将所有的空间点构建成voronoi多边形,然后将待求点也构建一个voronoi多边形,这样就与圆多边形有很多相交的地方,根据每一块的面积按比例设置权重,这样就能够求得待求点的值了。个人感觉这种空间插值方法没有实际的意义来支持。

4、样条函数插值spline

在数学学科数值分析中,样条是一种特殊的函数,由多项式分段定义。样条的英语单词spline来源于可变形的样条工具,那是一种在造船和工程制图时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。

在插值问题中,样条插值通常比多项式插值好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为龙格现象的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。

5、Topo to Raster

这种方法是用于各种矢量数据的,特别是可以处理等高线数据。

6、Trend

根据已知x序列的值和y序列的值,构造线性回归直线方程,然后根据构造好的直线方程,计算x值序列对应的y值序列。TREND函数和FORECAST函数计算的结果一样,但是计算过程完全不同。

阅读全文

与对异常数据如何采用插值的方法相关的资料

热点内容
知识产权资本测度理论与方法研究 浏览:730
手机拍摄技巧和使用方法 浏览:645
帕萨特领驭保险杠安装方法 浏览:186
苹果6s主板电池在哪里设置方法 浏览:735
重庆腊肉的制作方法视频 浏览:132
学情分析和目标实施方法 浏览:824
有哪些提高新陈代谢的方法 浏览:742
粗提血清球蛋白的最简便方法是 浏览:197
青蛙的折纸方法怎么压下去 浏览:812
立冬的功效和作用及食用方法 浏览:889
孩子最难训练的方法 浏览:231
切削液的使用方法 浏览:845
没满月的宝宝鼻塞治疗方法 浏览:681
处理二手手机最好的方法 浏览:399
抹子使用方法 浏览:884
白驳风治疗最好的方法 浏览:453
科目三一挡挂二挡的正确方法 浏览:546
硫酸粘菌素效价计算方法 浏览:315
阿克曼角异响解决方法 浏览:906
四平行八平行计算方法 浏览:252