A. 蛋白质纯化技术的方法
一、电泳:
在克隆基因表达产物的检测分析过程中,电泳是常用的方法,但在纯化蛋白时,通常都不采用电泳的方法。由于某些特殊的目的,需要用聚丙烯酰胺凝胶电泳纯化蛋白质,常用下述方法进行:①从电泳后的凝胶上切下所需的相应条带,将凝胶压碎,用缓冲液浸泡,使其中的蛋白质扩散出来,从而获得纯化的蛋白质。此法简单但回收率低。②将电泳后的凝胶用电洗脱的方法使蛋白质从凝胶转移到溶液中,从而达到纯化的目的。此法快速,回收率高,但需要特殊的电泳装置。
二、色谱法:
色谱法(chromatography)是蛋白纯化中最常用的一种方法,这种方法既可以制备大量的纯化蛋白质,又可以保持蛋白质的生物学活性。色谱的种类很多,可分为常规色谱和高效液相色谱(high-performance liquid chromatography,HPLC)。凝胶过滤色谱、离子交换色谱、亲和色谱等均为常规色谱法。HPLC包括反相高效液相色谱(reversed-phase HPLC,RP-HPLC)、离子交换高效液相色谱(ion exchange HPLC)等。根据目标蛋白性质的不同可选用相应的色谱分离技术纯化蛋白质。
1.凝胶过滤色谱法
凝胶过滤色谱法(gel-filtration chromatography, GFC)又称排阻色谱。凝胶是一类具有三维空间结构的多孔网状颗粒物质,如琼脂糖凝胶(sepharose)、葡聚糖凝胶(sephadex),将凝胶颗粒装入色谱柱中即可用于物质的分离。当被分离物质通过凝胶柱时,大于凝胶孔径的分子不能进入凝胶内部,只能在凝胶颗粒之间的空隙中流动和分配,流经的路途短,可很快被洗脱出来,而小于凝胶孔径的分子则进入凝胶颗粒内部,在凝胶内部穿行,流经的路程长,移动的速度慢,最后被洗脱出来;分别收集不同时相的洗脱液,即可得到纯化的物质。
GFC可在存在有多种离子、去污剂、尿素、盐酸胍、高或低离子强度、常温或低温等多种条件下进行,根据所分离物质的性质不同可选择相应的色谱条件,从而获得有生物学活性的纯化的生物大分子。
2.离子交换色谱法
离子交换色谱法(ion exchange chromatography,IEC)是根据物质的酸碱度、极性和分子大小的不同进行分离的技术,通常包括吸附、吸收、扩散、穿透、静电引力等复杂的物理化学过程。自然界的包括蛋白质在内的生物大分子都带有电荷,当所需分离的物质通过离子交换色谱柱时,由于所带电荷、分子量等不同,有些被固定相靠静电引力所吸附,未被吸附的物质可被缓冲液首先洗脱出来;被吸附的物质由于所带电荷多少不同,对固定相的亲和力大小也不同,可被梯度离子缓冲液先后洗脱下来,使同一溶液中的不同物质被分离。色谱柱中填充的阴离子交换剂可用于带正电荷物质的分离,而阳离子交换剂可用于带负电荷物质的分离。
3.亲和色谱法
许多生物大分子物质具有与其结构相对应的专一分子发生可逆性结合的特征,如酶与底物及辅助因子、酶与抑制剂、抗原与抗体、激素与受体、核酸片段与其互补的核酸序列、生物素与亲合素等,分子间的这种结合能力叫作亲和力。
亲和色谱(affinity chromatography)是利用生物大分子间所具有的特异性亲和能力进行分离的方法。该方法常把可亲和的一对分子中的一方固定在不溶于水的化合物上作为色谱的支持体即载体,使之固相化,作为固定相;另一方随流动相流经固定相,双方即可发生特异性结合;用流动相经过一段时间的洗涤,可将杂质去除,而后再利用亲和吸附的可逆特性,改用特殊的流动相使所需分离的物质被解离下来,从而得到纯化的物质。亲和色谱法中的载体种类很多,最常用的是琼脂糖凝胶(sepharose),其分子上有较多的羟基,活化后可与亲和分子相耦联,另外其理化性质稳定,不会影响色谱的分离过程。
亲和色谱法可在温和条件下操作,纯化过程简单、快速、分辨率高,对分离含量极少且性质不稳定的生物活性物质极为有效。但由于不是任何生物大分子之间均有特异的亲和力,而针对于某一种亲和分子就需要制备专一的亲和色谱柱,因此亲和色谱的应用具有一定的局限性,主要由于蛋白质尤其是酶、抗原、抗体的分离与纯化。
B. 蛋白质分离纯化主要方法
分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。
1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。然后根据不同的情况,选择适当的方法,将组织和细胞破碎。动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。细胞碎片等不溶物用离心或过滤的方法除去。
如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法将它们分开,收集该细胞组分作为下步纯化的材料。如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。
2. 粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。
3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。必要时还可选择电泳法,包括区带电泳、等电点聚焦等作为最后的纯化步骤。用于细分级分离的方法一般规模较小,但分辨率很高。
结晶是蛋白质分离纯化的最后步骤。尽管结晶过程并不能保证蛋白一定是均一的,但是只有某种蛋白在溶液中数量上占有优势时才能形成结晶。结晶过程本身也伴随着一定程度的纯化,而重结晶又可除去少量夹杂的蛋白。由于结晶过程中从未发现过变性蛋白,因此蛋白的结晶不仅是纯度的一个标志,也是断定制品处于天然状态的有力指标。
蛋白质分离纯化的方法:
一、根据分子大小不同的纯化方法
1、透析和超过滤
2、密度梯度离心
3、凝胶过滤
二、利用溶解度差别的纯化方法
1、等电点沉淀和pH控制
2、蛋白质的盐析和盐溶
3、有机溶剂分级分离法
4、温度对蛋白质浓度的影响
三、根据电荷不同的纯化方法
1、电泳
2、聚丙烯酰胺凝胶电泳
3、毛细管电泳
4、等电聚焦
5、层析聚焦
6、离子交换层析
四、利用选择性吸附的纯化方法
1、羟磷石灰层析
2、疏水作用层析
五、利用配体的特异生物学亲和力的纯化方法
亲和层析(affinity chromatography):
a.凝集素亲和层析
b.免疫亲和层析
c.金属螯合层析
d.染料配体层析
e.共价层析
六、高效液相层析合快速蛋白质液相层析
C. 常用的蛋白质分离纯化方法有哪几种
分离蛋白质混合物的各种方法主要是根据蛋白质在溶液中的以下性质:1)分子大小;2)溶解度;3)电荷;4)吸附性质;5)对其它分子的生物学亲和力等进行分离.
常见的分离提纯蛋白质的方法有:1、盐析与有机溶剂沉淀:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析.常用的中性盐有:硫酸铵、氯化钠、硫酸钠等.盐析时,溶液的pH在蛋白质的等电点处效果最好.凡能与水以任意比例混合的有机溶剂,如乙醇、甲醇、丙酮等,均可引起蛋白质沉淀.2、电泳法:蛋白质分子在高于或低于其pI的溶液中带净的负或正电荷,因此在电场中可以移动.电泳迁移率的大小主要取决于蛋白质分子所带电荷量以及分子大小.3、透析法:利用透析袋膜的超滤性质,可将大分子物质与小分子物质分离开.4、层析法:利用混合物中各组分理化性质的差异,在相互接触的两相(固定相与流动相)之间的分布不同而进行分离.主要有离子交换层析,凝胶层析,吸附层析及亲和层析等,其中凝胶层析可用于测定蛋白质的分子量.5、分子筛:又称凝胶过滤法,蛋白质溶液加于柱之顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因此不同大小的蛋白质得以分离.6、超速离心:利用物质密度的不同,经超速离心后,分布于不同的液层而分离.超速离心也可用来测定蛋白质的分子量,蛋白质的分子量与其沉降系数S成正比.
D. 根据蛋白与杂蛋白的大小可以选择怎样的方法来分离
蛋白质的分离纯化方法
2.1根据分子大小不同进行分离纯化
蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白
质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果
离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。
E. 蛋白质分离纯化的5种方法主要有什么
蛋白质分离纯化常用方法有:
1、沉淀,
2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动.根据支撑物不同,有薄膜电泳、凝胶电泳等.
3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法.
4、层析:
a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离.如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来.
b.分子筛,又称凝胶过滤.小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出.
5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量.不同蛋白质其密度与形态各不相同而分开.
F. 分离和提纯蛋白质的方法
1. 前处理
把蛋白质从原来的组织或溶解状态释放出来,保持原来的天然状态,并不丢
失生物活性.常用的方法:匀浆器破碎、超生波破碎、纤维素酶处理以及溶菌酶等.
超声波破碎法:当声波达到一定频率时,使液体产生空穴效应使细胞破碎的技术.超声波引起的快速振动使液体局部产生低气压,这个低气压使液体转化为气体
,即形成很多小气泡.由于局部压力的转换,压力重新升高,气泡崩溃.崩溃的气泡产生一个振动波并传送到液体中,形成剪切力使细胞破碎.
2. 粗分级
分离可用盐析、等电点沉淀和有机溶剂分级分离等方法.这些方法的特点是简便、处理量大,
3. 细分级
样品的进一步纯化.样品经粗分离以后,一般体积较小,杂蛋白大部分已被除去.进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等.必要时还可选择电泳、等电聚焦等作为最后的纯化步骤.
结晶是最后的一步