导航:首页 > 方法技巧 > 方程如何配方法

方程如何配方法

发布时间:2023-08-03 10:39:17

1. 用配方法怎样解方程

在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。

配方法:用配方法解方程ax^2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax^2+bx=-c

将二次项系数化为1:x^2+(b/a)x = -c/a

方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2= - c/a+(b/2a)^2

方程左边成为一个完全平方式:(x+b/2a)^2 = -c/a﹢﹙b/2a)^2;

当b^2-4ac≥0时,x+b/2a =±√(﹣c/a﹚﹢﹙b/2a)^2;

∴x={-b±[√(b^2;﹣4ac)]}/2a(这就是求根公式)

例:解方程:2x²+6x+6=4

分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。

解:2x²+6x+6=4<=>(x+1.5)²=1.25x+1.5=1.25的平方根。

配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件。

(1)方程如何配方法扩展阅读:

配方法解决其他数学问题:

求最值

1、已知实数x,y满足x²+3x+y-3=0,则x+y的最大值为____。

分析:将y用含x的式子来表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²,

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由于(x+1)²≥0,故4-(x+1)²≤4.故推测(x+y)的最大值为4,此时x,y有解,故(x+y)的最大值为4。

2、证明非负性

证明:a²+2b+b²-2c+c²-6a+11≥0

解:a²+2b+b²-2c+c²-6a+11=(a-3)²+(b+1)²+(c-1)²,结论显然成立。

例分解因式:x²-4x-12

解:x²-4x-12=x²-4x+4-4-12=(x-2)²-16=( x -6)(x+2)。

参考资料来源:网络-解方程

网络-配方法

2. 二元一次方程配方法的步骤

1.配方法:将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求解的方法;

2.用配方法解一元二次方程的步骤:①一般形式:把原方程化为一般形式;②二次项系数化为1:方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③配方:方程两边同时加上一次项系数一半的平方;④完全平方:把左边配成一个完全平方式,右边化为一个常数;⑤开方:方程两边同时开平方,得到一元一次方程;⑥得解:解一元一次方程,得出原方程的解;

3.说明:配方之后形成“左平方右常数”的形式,如果方程右边是非负数,则方程有两个实根;如果右边是一个负数,则方程没有实数根;配方法的理论依据是——完全平方公式a²+b²+2ab=(a+b)²;配方法的关键是——先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方;

4.举例:

配方法解方程

5.有不明白的地方欢迎追问!

3. 配方法的公式是什么

配方法 数学一元二次方程中的一种解法(其他两种为公式法和分解法)
具体过程如下:
1.将此一元二次方程化为ax^2+bx+c=0的形式(此一元二次方程满足有实根)
2.将二次项系数化为1
3.将常数项移到等号右侧
4.等号左右两边同时加上一次项系数一半的平方
5.将等号左边的代数式写成完全平方形式
6.左右同时开平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5.(x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)
6.x-1.5=±0.5
7.x1=2
x2=1

定义
解一元二次方程的一种方法,也指套用公式计算某事务。
另外还有配方法、直接开方法与因式分解法。
[编辑本段]步骤
1.化方程为一般式ax^2+bx+c=0;
2.确定判别式,计算b^2-4ac;
3.若b^2-4ac≥0,代入公式x=[-b±√(b^2-4ac)]/2a;
若b^2-4ac<0,该方程在实数域内无解,在虚数域内解为x=[-b±√(4ac-b^2)i]/2a。
[编辑本段]实例
解方程2x^2+4x-2=0。
解:x^2+2x-1=0
A=1 B=2 C=-1
b^2-4ac=2^2-4×1×[-1]=4+4=8
代入公式x=[-b±√(b^2-4ac)]/2a 得x=[-2±√8]/2×1=-1±√2
X1=-1+√2
X2=-1-√2
[编辑本段]注意事项
一定不会出现不能用公式法解一元二次方程的情况。(所谓“一元二次方程万能公式”)
但在能直接开方或者因式分解时最好用直接开方法和分解因式法。
只适用于初中阶段。

4. 该如何使用配方法解一元二次方程

配方法其实是基于直接开方法,利用开方和的完全平方公式特性来解。完全平方公式是将一个两项系数的式子的平方变成三项,进行因式分解。用字母表示为:(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。用配方法解一元二次方程的一般步骤:

(1)把常数项移到等号的右边;

(2)把二次顶系数化为1;

(3)等式两边同时加上一次项系数一半的平方;

(4)运用直接开平方法求得方程的根。

(4)方程如何配方法扩展阅读:

当二次项系数不为一时,用配方法解一元二次方程的一般步骤:

1、化二次项系数为1。

2、移常数项到方程右边。

3、方程两边同时加上一次项系数一半的平方。

4、化方程左边为完全平方式。

5、(若方程右边为非负数)利用直接开平方法解得方程的根。

5. 数学的配方法怎么配公式是什么

若x²+kx+n,则配中间项系数一半的平方。就酱。至于后边的数字,需要几就加或减几

6. 用配方法解方程的详细步骤是什么

配方法解方程的一般步骤

(1)化二次项系数为1,即方程两边同时除以二次项系数.

(2)移项,使方程左边为二次项和一次项,右边为常数项.

(3)要在方程两边各加上一次项系数一半的平方.(注:一次项系数是带符号的)

(4)方程变形为

配方法

7. 配方法怎么配方

用配方法解一元二次方程的一般步骤:

1、把原方程化为的形式。

2、将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1。

3、方程两边同时加上一次项系数一半的平方。

4、再把方程左边配成一个完全平方式,右边化为一个常数。

5、若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解。


(7)方程如何配方法扩展阅读:

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。

由于问题中的完全平方具有(x+y)2=x2+ 2xy+y2的形式,可推出2xy= (b/a)x,因此y=b/2a。等式两边加上y2= (b/2a)2,可得:

这个表达式称为二次方程的求根公式。

8. 如何用配方法解方程

配方法解方程,方法如下:
1、首先,先进行移项,即将方程左边的常数移到方程右边。
2、在对方程进行配方,我们选择一次项的系数除以2作为方程左边的常数,再将常熟平方,放置方程左边。方程右边也加该常数的平方,使左右相等。
3、方程左边整理成平方的形式,再将右边系数整合。
4、最后通过因式分解计算结果。

9. 怎么用配方法解一元二次方程

aX^2+(ac+1)X+c=0,
配方法解:
(aX+1)(X+c)=0,
aX+1=0,X1=-1/a。
X+c=0,X2=-c。

10. 配方法的基本步骤

1、第一步:把原方程化为一般式

把原方程化为一般形式,也就是aX²+bX+c=0(a≠0)的形式。

2、第二步:系数化为1

把方程的两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。

3、第三步:把方程两边平方

将方程两边同时加上一次项系数一半的平方,把左边配成一个完全平方式,右边化为一个常数项。

4、第四步:开平方求解

进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。


概述

在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。

配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。

阅读全文

与方程如何配方法相关的资料

热点内容
体育教学方法预防纠错法 浏览:917
小白菜做酸菜快速腌制方法 浏览:128
宫外孕保守治疗的用药方法 浏览:979
填浆方法设计参数如何设置 浏览:768
矶钓正确调标方法 浏览:524
重庆黑马训练方法 浏览:327
金赛研究方法 浏览:401
智能门锁安装具体方法 浏览:937
遗传性肾炎的最新治疗方法哪里治 浏览:270
什么方法可以最快减肥 浏览:14
处理小动物的简单方法 浏览:951
线上看车的技巧和方法 浏览:470
后门攻击怎么的方法 浏览:223
用什么方法治疗痔疮 浏览:131
常用的降温两种方法 浏览:953
天然气单灶安装方法 浏览:308
燃油微生物污染物的检测方法 浏览:558
自身免疫性肝病检测方法有几种 浏览:597
测量材料磁性的方法 浏览:615
找汽车找货技巧和方法 浏览:785