① 怎样学好数学方法技巧
一、看书习惯:这是自学能力的基本功。根据美国和前苏联对几十所名牌大学的调查表明,那些卓有成就的科学家有20%~25%的知识是来自学校,而75%~80%的知识是靠他们离校后通过工作、自学和科研来获得的。根据心理规律,初中学生已经具备阅读能力,但由于在小学受直观模仿习惯的影响,使众多学生误把数学课本当作习题集。
二、笔记习惯:“好记性不如烂笔头”。中学数学内容丰富,课堂容量一般比较大,为系统学好数学,从初中时期就必须重视培养做课堂笔记的习惯,课上做笔记还可约束精力分散,提高听课效率。一般,课堂笔记除记下讲课纲目外,主要是记老师讲课中交代的关键、思路、方法及内容概括。特别注意随时记下听课中的点滴体会及疑问。在“听”与“记”两个方面,听是基础,切莫只顾“记”而影响“听”。
三、动手实践、合作交流习惯“实践出真知”。动手实践能集中注意力,提高学习兴趣,能加深对学习对象的印象和理解。在动手实践中,能把书上的知识与实际事物联系起来,能形成正确深刻的概念。
在动手实践中,能手脑并用,用实际活动逐步形成和发展自己的认知结构,能形成技能,发展能力。在动手实践中养成“做前猜想-动手实验-操作结果-归纳总结”的习惯。“三人同行,必有我师”。同学间相互交流学习结果,各抒己见,取长补短。能达到动脑、动口、动手、激发思维、活跃气氛、调动积极性的作用。
四、作业习惯:数学作业是巩固数学知识、激发学习兴趣、训练数学能力的重要环节。有些同学视作业为负担,课后只凭着课堂上的印象匆忙作答,往往解法单一;有的还字迹潦草、马虎粗心、格式不规范、甚至抄袭。这就错失了训练良机,严重地响了学习效果。应该正确认识做作业的目的性,培养良好的作业习惯。
五、 思维习惯:科学的思维方法和良好的思维习惯是开发智力、发展能力的钥匙。心理学告诉我们,初一阶段是学生从形象思维向抽象思维转变的重要时期,所以这时候一定要重视良好的思维习惯的培养。根据初中数学内容的特点,良好的思维习惯包括逻辑性、周密性、发散性、收敛性、逆向性。
② 学好数学有哪些方法和技巧
学好数学有哪些方法和技巧
学好数学有哪些方法和技巧,学好数学的用处不言而喻,除了生活中的实用性,还是培养孩子思维逻辑形成的重要环节,家长们一起来看看学好数学有哪些方法和技巧,相信会得到一定的启发。
数学逻辑思维强,很多父母都比较注重孩子这方面的培养,而且是从小就开始培养。最开始父母都会教孩子数数,其实对于孩子来说学起来并不容易。那么怎样教孩子学数字,宝宝数字敏感期要抓住。
很多家长在孩子上了小学之后,发现数学是最难让孩子感兴趣的学科,使出浑身解数也不能让孩子对数学感兴趣,而且怎么补也觉得很吃力。其实宝宝从两岁左右,就可以在生活和游戏中自然、顺畅地建立起数学的概念。
“家长可以在日常生活中,对孩子点点滴滴地教,让孩子在动中玩,在做中学。需要注意的是,教孩子学习数的概念,必须根据幼儿的特点,由易到难,由具体到抽象,循序渐进地进行。
两岁多的孩子知道大小、多少、前后、早晚的时间、空间概念,他们往往凭视觉而不是凭计算得出结论”。早教专家提醒广大家长,要坚持循序渐进的原则,接受孩子个体的差异性,切忌对孩子提出过高要求,不要拿别家的孩子与自家的孩子相比,同时,要避免走入一些误区。
误区1:忽视“数学敏感期”
孩子在4岁左右会出现一个“数学敏感期”,他们会对数字概念如数、数字、数量关系、排列顺序、形体特征等突然发生极大的兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。
抓住孩子发展发育过程中的敏感期,适时地对幼儿的数学能力进行开发和引导,克服只重知识的灌,轻智力的启;重数的授予,轻幼儿的思考学习;重机械的记忆,轻启发引导。
误区2:学数学等于学算术
在孩子学数学的过程中,不少家长往往脱离了孩子学习数学的真正目的和意义,有的家长以为教得越多越好,把数学当成一种死的知识来教;有的家长自以为让孩子数100以内的数,背背口诀,做做加减法就行。
实际上,学数学的意义在于锻练孩子的思维能力,培养孩子的逻辑推理能力。幼数学的主要内容应包括:帮助孩子理解数的概念,了解简单的几何形体,学习事物的空间关系和时间关系,有一些简单的数学操作技术(如自然测量)等多方面,这几个方面不分轻重,缺一不可,而且在发展孩子逻辑思维的同时,还发展孩子的观察力、注意力、记忆力、空间想象能力等。
误区3:机械训练,记忆公式
机械训练能让家长在短时间内看到明显的效果,幼儿在表面上也的确能掌握一些具体的数学知识,但他的思维结构并未发生改变,也就是说幼儿并没有得到实质的发展。
学习数学在于理解,让孩子真正理解数与数之间的关系,掌握数的轮段概念。幼儿学习数学必须借助材料把抽象的薯旦数学知识具体、生动地呈现在孩子面前,使他们容易理解和掌握。
动手操作是孩子进行数学思维的重要方式,因此,在日常生活中,家长要善于结合各种生活小事,抓住时机对孩子进行教育。
对于孩子的.教育来说,和生活结合的学习效果更好,源于生活的教育可以无处不在。和孩子玩“开小卖部”,是一项非常好的活动,通过这个游戏教孩子学加减乘除,可以有效地促进孩子的数学运算能力,是一种真正寓教于乐的学习方法。
刚开始时,父母要给孩子充足的“货源”——家里的日常用品,或是孩子的玩具之类的。父母要认真地浏览她的商品,选定要买什么,问孩子多少钱,有时还要讨价还价一下。付款时,一般情况下都是需要找一些零钱回来的,比如买一根筷子六角钱,父母一般给她一元钱,这样孩子就得找四角钱出来。
开始时先有孩子自已定价。小孩定价,无论大小都是一个比较整、比较简单的数字,比如1元、200元等。孩子一般不用“1.40元”或“203元”这样的定价来为难自己。玩过几次后,家长就可以暗暗地把她往稍复杂些的计算上引。比如雪糕原来卖1元一支,家长可以建议说,这几天雪糕涨价了,每支一块二了,你这里要不要涨价啊,涨价可以每支多赚两毛呢。然后家长给孩子两元钱或五元钱,这样她的计算就比较复杂了。家长也可以带孩子到外面腊手誉小卖部买东西时,让孩子注意一下小卖部商品定价基本上都有零头,于是“价格”都变得有零头了。开小卖部的计算难度上升时,过渡应自然,这样会保持孩子的兴趣。开始时一般都是玩100元以内的加减法,稍后就给孩子一些建议,认为某个东西应该很贵,可以把价格定到三五百元。
“开小卖部”的过程就是孩子不停地做“应用题”的过程,这对孩子有很好的数学启蒙效果。数学教育不要一下把孩子拉到抽象的数字上,不要拿一些干巴巴的枯燥的计算来为难孩子。要让孩子在游戏中感受数字,让他体会到计算不是抽象的东西,是存在于周围生活中的有用的东西,和我们的日常生活密切联系着。
在玩“开小卖部”游戏时要注意几个问题:
首先是不要把用意告诉孩子
玩这样的游戏,在家长这里是为了让孩子学会计算,如果你把这个目的告诉孩子了,或被他察觉了,孩子就会失去游戏的兴趣。要让孩子觉得这仅仅就是个游戏,只是为了玩。大人在和孩子玩时,要拿出认真而单纯的心态,把自己当成孩子一样投人地去玩,不要在这个过程中有任何说教,更不要因为孩子算错账训斥孩子。
其次是避免干扰孩子的思维
无论孩子定价多少,都不要那样大惊小怪。不要以你的生活经验来干扰孩子的思维,孩子并没有市场价值概念。我们只是为了让她学会计算,不是为了让她学会做生意,所以孩子怎样定价并不重要。她完全可以把一斤米定成2元,也可以把一个金戒指定成4角钱。
第三是不要让计算为难孩子
家长要记住的是,这是个游戏,不是数学课。家长可以通过“买卖”发展孩子的计算能力,但不可操之过急。在游戏中要把孩子的乐趣放在首位,学习放在第二位。计算的难度可以慢慢提高,但不要让太难的计算干扰乐趣。如果孩子在买卖中屡屡感到计算的困难,他就会有受挫感,就会失去兴趣。
第四是不强迫孩子玩
不要为了让孩子学习而频频地玩同一个游戏。这个游戏我和一些人讲过后,就有人回家天天和孩子玩。开始孩子还有兴趣,但连玩三天后就不想玩了,家长就左说右劝地要玩。也有那样的时候,刚开始玩,一笔生意还没成交,孩子就因为什么原因突然不想玩了,这时家长也不要强迫,只要孩子表现出不想玩了,就要立即停止.以免败坏了孩子对游戏的胃口。如果家长在游戏中表现得太积极,还容易让孩子察觉你的用意。
第五是尽量用真钱
有的家长开始和孩子玩时,不想用真钱,觉得那样不卫生,就用一些纸片写上面值来玩。但发现孩子对假钱没兴趣,小孩子一旦意识到钱可以换来想要的东西时,孩子就会对钱情有独钟。用真钱可以让孩子在玩耍中更投人,玩罢注意洗手就是了。
第六是增加游戏变数,尽量使每次游戏略有不同
一般来说孩子愿意做“店主”,尤其是开始时。玩过几次后,为了保持游戏的新鲜感,可以和孩子互换角色,让孩子再回到顾客的身份。无论谁扮顾客,都可以扮不同的角色,或形成不同的组合,有时是老爷爷老奶奶,有时是小朋友,有时是医生或教师。不同的身份有不同的事情和需求,这样就会有很多故事产生出来。还可以让家里的各种玩具参与进来,如毛绒小狗和小熊等来买东西,当然是有人替代它们说话和付钱。
③ 数学学习窍门和方法
数学的重要性不言而喻,有哪些能培养数学思维的学习小窍门?
八、排序思维
关于排序思维,家长一般重视循环排序的教育,比如一说三角形、圆形、三角形、圆形,孩子能知道接下来就是三角形、圆形。这里同样再给大家查漏补缺,不能忽视“第几”的排序方式,比如小朋友们排排队,从左到右第几,从右到左第几,以及让孩子把一些东西从大到小排序或从高到低排序,这些能增强孩子对序数的感知力,和以后数学学习密切相关,而且相信大家在工作中也没少遇到需要排序处理的问题。
九、抽象思维
孩子一般在5岁开始出现抽象思维,多数家长并不知道怎么培养孩子的抽象思维,其实很简单,比如“你看妈妈今天和平常穿的衣服有什么不同?”孩子就要通过思考,在提取一个个信息比较后,分析出不同在哪里。
类似的例子很多,家长在生活中多注意即可。
十、解决问题的思维
学习数学的最终目的是解决问题,多数家长却只追求孩子的成绩,家长应该让孩子利用数学知识去解决问题,并给孩子留下空间,让孩子思考,结果正确与否,并不重要。比如有6颗草莓,让孩子平均分给大人。
④ 学好数学的十个方法及技巧是什么
学好数学的十个方法及技巧是:
十大方法:
1、要养成预习的习惯。这是我多年学习数学的一个好方法,因为提前把老师要讲的知识先学一遍,就知道自己哪里不会,学的时候就有重点。当然,如果完全自学就懂更好了。
2、书后做练习题。预习完不是目的,有时间可以把例题和课后练习题做了,检查预习情况,如果都会做说明学会了,即使不会还能再听老师讲一遍。
3、做老师布置的作业,认真做。做的时候可以把解题过程直接写在题目旁边,比如选择题和填空题,因为解答题有很多空白处可写。这样做的好处就是,老师讲题时能跟上思路,不容易走神。
4、整理错题。每次考试结束后,总会有很多错题,对于这些题目,我们不要以为上课听懂了就会做了,看花容易绣花难,亲手做过了才知道会不会。而且要把错的题目对照书本去看,重新学习知识。
5、查缺补漏。在做了大量习题以后,数学成绩有所提高,但还是存在一些不会做的题目,我们要善于发现哪些类型的题目还存在盲区,然后逐一击破。
6、提高数学分数段。可能数学学了一段时间,成绩老是上不去,这是要总结差在哪里?基础题还是拔高题,然后对自己提出高要求,基础题目争取不丢分,然后做一些有难度的题目。
十大技巧有:
1、华氏与摄氏温度的换算有个固定的公式。
2、两位数的乘法。
3、任何二位数和11相乘。
4、圆周率后面的小数。
5、快速算出分数乘以整数的方式。
6、蝴蝶式分数加减法。
7、9的乘法表记忆。
8、用手算出99乘法表中的6,7,8,9。
9、百分比计算法。
10、两位数的乘法。
⑤ 学数学的基本方法和技巧有哪些
学数学的基本方法和技巧如下。
一、学数学的基本方法。
1、数学的学习时间应该占全部总学科的50%左右。
数学是一个费时费力的学科,无论文理。对于文科和理科来说,数学的高考成绩都是重中之重。比如文科,鲜有听到一个班文综成绩能差60分以上的,但数学别说60,80都能差出来。
对于理科,物理,化学都需要大量的运算,数学的学习又是提供一种工具与思维。因此,对于之前的文理科,抑或是现在取消文理以后的偏文,偏理科来说,数学都是非常重要的。
2、要看课本。
在经过一段时间的学习以后,比如是一个章节的学习,就一定要拿出数学课本,找一个连贯的时间,静静地读完数学课本里对应章节的每一段话,每一个字,包括所有的补充材料。
当然,课后的习题,也都要通读。在读完这些内容以后,最后还要翻开课本的目录,对应这个章节的每一个小标题,静心回忆一下每一个小标题的最重要的知识点,你最感兴趣的内容等等。
二、学数学的技巧。
制作错题本,错题本的意义,不是把每一道你做错的题目都誊写一遍,而是要把那些反复做不对,反复做都有差错的题目保存下来。错题本的本质,是对我们思维方式,思考习惯的一个纠正。在这个错题本上的题目都应该是做了3遍还会出错的题目。
而错题本的记录内容,至少应该包括下面几个内容。是完整的题目信息;是用自己的方式演算出的正确答案(将参考答案照抄一遍没有任何意义);是自己对这个题目的评论,需要重点指出关键步骤,以及自己最初的想法与正确做法的差异在哪里。
⑥ 学好数学的十个方法及技巧是什么
1、学数学最重要的就是解题能力。要想会做数学题目,就要有大量的练习积累,知道各类型题目的解题步骤与方法,题目做多了就有手感了,再拿出类似的题目才会有解题思路。
2、其次是学会预习。解题思路不是直接就有的,也并非通过做几道简单的题目就能轻易获得,而是在预习过程中不断积累出来的。因此,预习在数学学习过程中起到了非常重要的作用。预习一方面能够让大家提前对数学知识有所了解,另一方面能够培养数学独立学习能力。
3、学数学必须多做题。理解了数学基本定义和知识点以后,就需要通过做对应习题去巩固知识,多做多练才能更好地掌握所学知识,学数学也是看花容易绣花难的,只有真正动手去做题、经历了实操过程能学会。
4、做完题要学会总结。对于做过的题型及做错的题目要善于进行分类总结,再遇到类似的题目要会分析,知道哪里容易出现问题,然后尽量去避免。同时在做题和总结过程中,要学会举一反三,抓住考点去复习。
5、学数学要会看书和查缺补漏。数学基础考点都来源于课本,大家之所以觉得书没什么可看,是因为对教材掌握程度不够。书上的每个定义都要理解后倒背如流,深究每个词语的含义,做懂每个例题,会推导数学公式及变形公式。
6、做数学题目方法不唯一,只要是逻辑合理、能一步步推导出结论的方法都可以,不必拘泥于老师讲授的方法。做数学小题也可以采用画图、试值法、代入法等去做,只要沉下心去研究,功夫不负有心人,数学总能够学好。
⑦ 如何学好数学的方法和技巧是什么
学好数学的方法和技巧是:
一、学好数学的方法
1、数学要求具备熟练的计算能力,所以课后还有做足一定量的练习题,只有通过做题练习才能拥有计算能力。
2、课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3、数学公式一定要记熟,并且还要会推导,能举一反三。
4、数学重在理解,在开始学习知识的时候,一定要弄懂。所以上课要认真听讲,看看老师是怎样讲解的。
5、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
6、数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
7、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
8、数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
9、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
二、学好数学的技巧
1、数学要通过做题掌握理论
数学虽然有不少公式、定理需要同学们去背诵跟记忆,但不是死记硬背就能会的,需要学会数学思维,理清数学思路,用数学思维方式去做题,在做题的过程中自然就能把理论知识掌握了。
做题是一个不断巩固知识的过程,也是对数学理论重新认识的过程,不做题根本不能知道哪里不会。当然,数学光靠做题还不够,还要多总结错题,这样才能提高数学成绩。
2、学好数学的方法是多做题
这种做题虽然可以理解为题海战术,但是不不等同于搞题海战术,因为数学不做题就想学会、想提高分数几乎是不可能的事情,但一味的多做题而不反思总结的话,也是有弊端的。数学最忌讳的就是眼高手低,看似会做了,可一到自己动手做题目,就卡壳了。
⑧ 学好数学的十个方法及技巧
学好数学的十个方法及技巧
学好数学的十个方法及技巧,想要学好数学不能只动脑思考,一定要勤动手多做题,数学作为孩子学习的第一个理科学科,这将会伴随孩子很长的一段时间,学好数学的十个方法及技巧。
我们都知道数学这门学科是一个非常具有逻辑性的一门学科,很多学生在学习数学的过程中都会遇到很多的难题,这让学生和家长非常的困扰。
学生要知道数学成绩其实是非常非常能够拉开分值的一个科目,所以在这门学科上能够学好真的是非常的有帮助。
不过,很多家长和学生可能都会觉得数学学不好是因为没有天赋,但是,其实并不完全是这样,掌握好的学习的方法和技巧才是主要。
这期就来跟大家聊一聊,没有天赋怎么学好数学?掌握好学习的方法和技巧,你也可以学好!
上课认真听讲,课堂是掌握和拓展数学知识的重要环节
想要学好数学,上课认真听讲是一个重要的环节。上课的时候,老师一般就会讲一些关于做题思路和一些拓展的知识内容,也就说上课的时候一般都是一些干货,所以这是学生不能错过的东西。
相信如果学生能够在上课的时候跟上老师的思路,那么一般的情况下,这样的学生数学成绩也就不差了,所以想要有一个好的数学成绩,那上课的时候就要认真的听讲了。
培养自学能力
老师在讲解新的概念和公式上,总是通过我们已经学过的知识来推导新知识。这样就是通过已知学习未知。可以说是水到渠成。
过去在一次家长会上,校长的一句话让我记忆很深,他说我是教数学的,学生数学学得好不是我教得好,而是学生自己悟出来的。
当然老师是谦虚的,但是我们也从中看出了一个道理,那就是自己要主动学习,一个班几十个学生为何学习成绩千差万别,就是自学能力的差距。
自学能力越强,悟性就越高。随着学生的不断长大,他们对老师的依赖性正在逐渐减弱,自学的能力不断增强。
数学也需要记忆
文科有大量知识需要我们去记忆,很多人错误的认为数学就不需要背,很多名校的老师都表示数学基础知识也需要花费时间去记忆,我们可以每天投入15分钟背本月、本学期学过的知识与笔记,要做到盖住以后能尝试回忆出来,
根据人类遗忘规律,千万不要只背一次就放过,而是要反复回头复习,直到完全记住,要把所有公式、笔记彻底记牢,特别是对于基础差的同学,这一招提高数学成绩很明显。
整理错题集,方便日后复习
学生在学习数学的过程中,整理错题集这个学习方法是必须要学会的,而且还要将错题集整理的清楚明白,要能够方便自己日后去复习。
否则,自己记得密密麻麻自己都不想去看的话,那么这就是没有意义的事情了。
错题集的作用,对于数学这个学科来讲真的是非常重要,因为错题集其实就是一个知识点的整理和延伸,懂学习的学习生会在错题集上加上解题思路。
认真审题
很多家长发现,在问孩子数学题目为什么做错时,答案都是:“题目看错了”。题目没审清,学习再好的孩子也答不对题。
通常情况下,审题错误分为两种:
1、文字、数字漏看、错看
2、题意理解错误
为了让孩子避免发生这样的错误,可以养成“一扫、二划、三落”的习惯!
首先,扫一遍题目,确定这是一道题考的是什么。是鸡兔同笼、相遇问题,还是工程问题?
有了初步的概念后,就能知道题目的大概套路是什么,解题时的基本思路也就形成了。
其次,划出重点词,像是至少、不超过、占等词。这样可以让孩子在解题过程中,不会出现计算错误等问题,还能直接简化题目。
最后,才是落笔。将题目中所有的已知条件,结合基本思路,答案也就跃然纸上了。
多读书
被誉为“东方国度上灿烂的数学之星”“东方第一几何数学家”“数学之王”的苏步青,无论是在小学,中学还是大学,成绩都十分优异,他觉得学习数学的方法,除了多做题就是多读书。
苏步青认为,学习数学特别重要的一步,就是要弄清楚基本概念,也就是我们常说的定义,以及有每个基本概念引出的定理,还有每个基本概念是如何演出的?
这都需要我们仔仔细细的阅读数学书籍,数不清说对于数学书中的某些内容,有时他自己也不是一下子就很明白,自己也要多读很多遍才能清楚。
学数学要在理解的基础上去做题,学会数学关键在于个人的悟性,除了上课认真听讲、课后做匹配练习外,还需要练就独立解题能力与总结反思能力,学会以不变应万变。
学数学最重要的就是解题能力。要想会做数学题目,就要有大量的练习积累,知道各类型题目的解题步骤与方法,题目做多了就有手感了,再拿出类似的题目才会有解题思路。
其次是学会预习。解题思路不是直接就有的,也并非通过做几道简单的题目就能轻易获得,而是在预习过程中不断积累出来的。因此,预习在数学学习过程中起到了非常重要的作用。预习一方面能够让大家提前对数学知识有所了解,另一方面能够培养数学独立学习能力。
学数学必须多做题。理解了数学基本定义和知识点以后,就需要通过做对应习题去巩固知识,多做多练才能更好地掌握所学知识,学数学也是看花容易绣花难的,只有真正动手去做题、经历了实操过程能学会。
做完题要学会总结。对于做过的题型及做错的题目要善于进行分类总结,再遇到类似的题目要会分析,知道哪里容易出现问题,然后尽量去避免。同时在做题和总结过程中,要学会举一反三,抓住考点去复习。
学数学要会看书和查缺补漏。数学基础考点都来源于课本,大家之所以觉得书没什么可看,是因为对教材掌握程度不够。书上的每个定义都要理解后倒背如流,深究每个词语的含义,做懂每个例题,会推导数学公式及变形公式。
做数学题目方法不唯一,只要是逻辑合理、能一步步推导出结论的方法都可以,不必拘泥于老师讲授的方法。做数学小题也可以采用画图、试值法、代入法等去做,只要沉下心去研究,功夫不负有心人,数学总能够学好。
1、重视计算
数学的计算学习就像语文的识字学习,是最基本的。
不识字,语文读不好;计算差,数学同样学不好。而且计算好,会给孩子数学学习提供很大的帮助。
家长可以每天让孩子做2分钟口算。一开始,2分钟内能只能做完20道口算,但之后,你会发现孩子会越来越快,正确率越来越高。
2、重视生活中的数学
其实数学的学习对生活的影响很大,它能提供很多的帮助。
例如:
买东西、计算利率、盈利等等,这些都用到数学。你可以在生活中,有意识的跟孩子提数学问题,让他解答。很简单,你带孩子去买菜,一斤苹果5元,买3斤多少钱,给阿姨20元,找回多少钱。
别小看这些,在小学数学学习中,解决问题占的分数是最多的,而解决问题无非就是判断用加减乘除中的哪种来列式解答,这些问题其实就是生活中的问题,孩子在生活中接触多,自然就会解答。
3、主动预习
新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。
如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。
抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
有些家长头疼孩子上课效率很差;这其中很关键的原因是没有做好预习;自然也就做不到有的放矢
4、思考是数学学习方法的核心
一些孩子对公式、性质、法则等背的挺熟,但遇到实际问题时,却又无从下手,不知如何应用所学的知识去解答问题。
如有这样一道题让学生解“把一个长方体的高去掉2厘米后成为一个正方体,他的表面积减少了48平方厘米,这个正方体的体积是多少?”
孩子对求体积的公式虽记得很熟,但由于该题涉及知识面广,许多同学理不出解题思路,这需要学生在老师家长的引导下逐渐掌握解题时的思考方法。这道题从单位上讲,涉及到长度单位、面积单位;从图形上讲,涉及到长方形、正方形、长方体、正方体;
从图形变化关系讲:长方形→正方形;从思维推理上讲:长方体→减少一部分底面是正方形的长方体→减少部分四个面面积相等→求一个面的面积→求出长方形的长(即正方形的一个棱长)→正方体的体积;
经启发,孩子分析后,学生根据其思路(可画出图形)进行解答。
有的学生很快解答出来:
设原长方体的底面长为X,则2X×4=48
得:X=6(即正方体的棱长),
这样得出正方体的体积为:6×6×6=216(立方厘米)。
所以说,在学习过程中,老师家长最大的作用是:启发。
孩子在老师家长的引导下,去主动思考解题的思路,掌握学习方法!
5、培养阅读兴趣
假期和一位资深老师聊到孩子数学学习问题,分享一段重点:
“您孩子数学学习是什么情况?”老师问。
“题不难成绩还不错。一遇难题,就好像深入不进去。”提起女儿的数学,我真头疼。
“那她平时喜欢读书吗?”
“不是特别喜欢,但也不是一点不读。平时喜欢看漫画之类。”我想了想说。
“哦,那科普读物和一些经典名着读过吗?”老师接着问。
“没有,我认为对学习有用的书她都读不懂,也不愿意读。”我有些不好意思地回答。
“是有些问题。”老师顿了顿说,“孩子将来中学要想学好数理化,必须小学得多读书,特别是有深度有人文素养的好书。多读好书的孩子思维活跃,视野也开阔,到了高年级就更能显示出优势。”
“我们带过的数学成绩好的同学大多6、7岁就能看书,在小学阶段就大量阅读有深度有人文素养的好书,爱思考,爱看书,这群孩子问问题的深度和广度有时把我都难倒了。
听她这么一说,我这才更加理解“学生读书越多,他的思维就越清晰,他的智慧力量就越活跃。”
阅读对数学的重要性
很多家长总觉得阅读所带来的改变很缓慢,而考试就在眼前,所以还是觉得不如补课来得直接,效果更显着。
其实:阅读的功效绝不仅仅是丰富文化积淀,提高语文素养,而是帮助孩子点燃思维的火花,拓展视野,深化思维,提高学习力。
所以,阅读不仅仅是语文的事情,它对于任何一门学科来说都是首要的、。有研究发现,一年级或更早开始大量阅读的`孩子比三年级开始阅读的孩子在其后的中小学学习,尤其是数理化学习方面潜力更大。
因为前者在其后的学习生涯中具备了深阅读能力和习惯,也就是理解能力很强,而后者阅读时思维很肤浅,理解能力自然很弱。这个现象在初二这个分水岭年级就表现得很明显了。
所以,不要等到中小学遇到困难才没完没了地补课“拉一把”,而是要让孩子4-7岁解决识字问题,6-9岁就能爱看书,9岁后就会大量阅读、读好书。
六种解题思想
1、函数与方程思想
函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2、数形结合思想
数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。
解题类型
①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3、分类讨论思想
分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型
类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。
4、转化与化归思想
转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。 常见的转化方法
①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
③数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
⑥构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题;
⑦坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径。
5、特殊与一般思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
6、极限思想
极限思想解决问题的一般步骤为:①对于所求的未知量,先设法构思一个与它有关的变量;②确认这变量通过无限过程的结果就是所求的未知量;③构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。