① 怎么运用简便算法
简便计算是采用特殊的计算方法,运用运算定律与数字的基本性质,从而使计算简便,将一个很复杂的式子变得很容易计算出结果。
主要用三种方法:加减凑整、分组凑整、提公因数法。
他们使用的都是数学计算中的拆分凑整思想。
主要步骤:
①遇见复杂的计算式时,先观察有没有可能凑整;
②运用四则运算凑成整十整百之后再进行简便计算。
加减凑整法
1、将计算式中的某一个数拆分,使其能与其他的数凑成整十,整百;
2、补上一个数,能够与其他数凑整,最后再减去这个数。
分组凑整法
在只有加减法的计算题中,将算式中的各项重新分下组凑整,主要采用两个公式:G老师讲奥数(微)。
加法结合律:a+b+c=a+(b+c)=(a+b)+c;
减法的性质:a-b-c=a-(b+c)。
提公因数法
使用乘法分配律提取公因数,a x (b±c)=a x b±a x c;
如果没有公因数,可以根据乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
② 如何进行简便运算
简便运算,就是利用运算定律或者是运算性质,巧用特殊数之间的特性进行巧算
乘法分配律为:两个数的和与一个数相乘,先将它们与这个数分别相乘,再相加,积不变.即:(a+b)×c=a×c+b×c.反过来则:a×c+b×c=(a+b)×c
简便计算常用方法:
1、利用运算定律。利用加法的交换律和结合律,乘法的交换律、结合律和分配律,可以使计算简便。
2、分解因数。有的特殊数相乘是可以得到整数的,比如25和4,125和8等等,在我们遇到这些数字时,可以想办法把它们变成能得到整数的数字。
3、数字变形。有的列式中的数字不能用简便方式,但是我们把一些数字变形后就可以采用简便方式,这时我们就要给数字变形了。
4、等差数列。有些算式的相邻数字的差是相同的,这时我们可以采用等差数列公式算式。
5、设数法。有些算式中,有的数字是相同的,但是式子又比较长,这时我们可以把相同的数字组成的算式设为一个字母,然后把式子中相应的换成字母,再计算,就简便多了。
6、凑整法。有些小数与整数相差很少,又有规律,这是我们可以凑成整数计算。
7、拆分法。拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
③ 用简便方法计算
“简便运算”是四则混合运算中的一种特殊运算方式,其作用是:让学生在短暂的时间内快速地算出正确答案。简便运算与四则混合运算的算法是有区别的,它不按四则混合运算的运算顺序进行运算,而是运用各种运算性质和运算定律进行运算,是一种特别的运算方式。 “简便运算”的试题种类很多,一般可分为两大类:用“运算定律”和“运算性质”进行运算 (一)运用“运算定律”进行运算 (1)运用“加法交换律和结合律”进行运算。
2 123+98+77 =(123+77)+98 =200+98 (先交换) =298 (后结合) (2)运用“乘法交换律、结合律和分配律”运算。 ①运用“乘法交换律和结合律”运算。 125×37×8=125×8×37=37000 这种试题是先应用交换律,后应用结合律,减少了计算的复杂性,保证了计算的准确性。 ②运用“乘法分配律”运算。 A 27×6+27×4=27×(6+4) =27×10 =
270 这类试题是开放型的,有的虽然不能直接运用乘法分配律进行运算,但是可以应用乘法分配律进行同化方式或顺运方式进行运算。 (二)运用“运算性质”进行运算 (1)运用“加法运算性质”进行运算。如: ①168+98=168+100-2=266 ②168+103=168+100+3=271 这类试题的简算方法是:找出两个加数的特征把其中一个加数看着是比它较接近的整十、整百或整千数来相加,然后看是“多加几,就减去几;少加几,就再加上几”。 (2)运用“减法运算性质”进行运算。如: ①327-99=327-100+1=228 ②458-103=458-100-3=355 这类试题的简算方法是:看减数的特征把它看作是一个与它比较接近的整数
3 的整十、整百或整千数来减,然后看是“多减几”还是“少减几”,如果是多减几,就再加几;如果是少减几,就再减几。 ③ 178-47-53=178-(47+53)=78 这类试题的简算方法是:(算理)一个数连续减去两个数,可以写成这个数减去后两个数的和,但是必须注意,要先找出“后两个数”的特征,即它们相加的结果是不是整十、整百或整千数等。如果是就可以用这个方法进行简便运算。 (3)运用“乘法运算性质”进行运算。如: 25×32=25×4×8=100×8=800 108×24=(100+8)×24=100×24+8×24=2592 这类试题的简算方法是:先看算式中两个因数的特征,看看其中哪一个因数根据需要按“积的形式”或“和的形式”折分后,与另一个因数相乘,可以使计算简便,就选择那种方式。 (4)运用“除法运算性质”进行运算。如: 12500÷25÷5=12500÷(25×5)=12500÷1225=100 900÷36=900÷9÷4=25 这类试题的简算方法是:第一种试题(算理):一个数连续除以两个数,可以改写成这个数除以后两个数的积;第二种试题的简算方法是根据需要把除数折分成两个因数的积,使计算简便。
总之,在四则混合运算中,简便运算试题的类型不外乎这几种形式,只要学生掌握四则混合运算顺序,同时掌握好上述简便算法,就可以保证计算的时效。
④ 数学简便计算,有哪几种方法
一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:
=1.14×10
=11.4
二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。
三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:
=1.2×(1+5+4)
=1.2×10
=12
四、重复简便计算。在一道题里不止一次地进行简便计算,这种情况往往不注意后一次简便计算。例如:
=8×55×0.125
=8×0.125×55 第二次
=1×55
=55
一简算的根据 a、乘法运算定律 b、加法运算定律 c、减法、除法的运算性质
二简算的类型 a、直接简算 b、部分简算 c、转化简算 d、过程简算
三简算的几种公式:
加法:a+b+c=a+(b+c)(加法结合律)
乘法:a×b×c=a×c×b(乘法交换律) a×b×c=a×(b×c)(乘法结合律) (a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)
减法:a-b-c=a-c-b(减法交换律) a-b-c=a-(b+c)(减法结合律)
除法:a÷b÷c=a÷c÷b(除法交换律) a÷b÷c=a÷(b×c)(除法结合律) (a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)
注意除法分配率只有在被除数是两个数的差或和的情况下才能进行分配
希望帮到你 望采纳 谢谢 加油
⑤ 如何简便计算
有很多简便计算的方法,以下是一些常见的技巧:
1. 估算:当你需要快速计算一个数时,用估算是一个很好的方法。例如,当你需要找到一个购物清单的大致总价时,你可以估算每个项目的价顷液判值,并埋差在头脑中相加。当你需要快速做出决策时,估算也是一个很有用的技巧。
2. 利用约数:当你需要进行除法运算时,先考虑是否存在一个约数。例如,如果你需要计算72 ÷ 4,你可以想雀改到4是72的约数,因此可以得出结果18。
3. 利用倍数:另一个有用的技巧是利用倍数。例如,如果你需要计算9 x 8,你可以想到9 x 10 = 90,然后再减去9 x 2 = 18,得出结果72。
4. 利用记忆法:使用记忆法是另一种简便的计算方法。例如,你可以记住一些常见的数字组合,例如乘法口诀表和常见的百分比和分数值。
总的来说,实践使完美。当你练习这些技巧时,你会发现自己可以更快地进行数学计算。
⑥ 数学简便计算,有哪几种方法
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2