① 数学乘法快速计算方法
数学乘法快速计算方法有6点:
1、十几乘十几:口诀:头乘头,尾加尾,尾乘尾。
2、头相同,尾互补(尾相加等于10);
6、十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
如果遇到有一个数尾数是5的时候,就要注意方法,可以分成两类,一类是奇数乘以尾数为5的十位数,另一类是偶数乘以尾数为5的十位数。
② 数学速算方法有哪些
一、充分利用五大定律
教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。
二、巧妙运用首同末合十
利用首同末合十的方法来训练。首同末合十法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用首同末合十的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54x56=3024,81x89=7209。
三、留心左右两数合并法
任意的两位数乘上99或任意的三位数乘上999的速算法叫做左右两数合并法。
1、任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62x99=6138,48x99=4752。
2、任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781x999=780219,396x999=395604。
四、利用分数与除法的关系来巧算
在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,
24/18x36/12=(24/18)x(36/12)=24/18x36/12=4。
五、利用扩大缩小的规律进行简算
有些除法计算题直接计算比较繁琐,而且容易算错,利用扩缩规律进行合理的变形可以找到简便的解决方法。比如,
7/25=(7x4)/(25x4)=28/100=0.28,
24/125=(24x8)/(125x8)=192/1000=0.192。
③ 快速计算的方法与技巧
快速计算的方法与技巧如下:
在小学阶段,大量的数学计算题就行稿已经出现了,作为最容易丢分的一个题型,让不少家长和孩子都为之头痛。那么,如何才能解决这一难题,让今后的小学计算更加的精精、准、狠呢?
不管是几个1的平方,都是有规律的;乘数固定为8,加数递增,配带前就会变成有规律的金字塔型;不管是什么培清样的二位数乘以11,乘积的百位和个位数字会是被乘数的两个数字,而十位数字则是被乘数的数字相加。
分子为一,分母不同的数字相加时,只要找出分母的最小公倍数,把分母变成一样的数字就可以了。被乘数和乘数都很大的话,把被乘数十位数以上的数字以下面的公式运算:十位数以上x(十位数以上+1)为乘积的“头”,被乘积与乘积的个位数字互乘为“尾”,就能算出答案,不过尾数要相加等于10才行。
④ 小学快速算术的方法
小学快速算术的方法
小学快速算术的方法,只要熟练掌握计算法则和运算顺序,化繁为简,化难为易,就能算得又快又准确。掌握简便算法可以给孩子大大节省时间,下面来看看小学快速算术的方法。
低年级组
1. 加数“凑整”
几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,把几个数相加。
例:
14+5+6
=14+6+5
=25
2. 运用减法性质“凑整”
从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。这种口算比较简便。
例:
50-13-7
=50-(13+7)
=50-20
=30
3. 近十、近百、近千的数
计算时可以把接近整十、整百、整千……的数看作整十、整百、整千……的数进行解答。
例:
(1)497+136
497可以近似的看成500,
原式
=(500-3)+136
=500+136-3
=633
(2)760+102
将102看成100+2
原式
=760+100+2
=860+2
=862
4. 补数法
利用"补数法",将每个加数加1后凑成20000、2000、200、20进行计算。
例:
19999+1999+199+19
可以看成:
(20000-1)+(2000-1)+(200-1)+(20-1)
=20000+2000+200+20-4
=22220-4
=22216
5. 利用加减法交换律:
先加再减的题目也可以做成先减再加。
例:
562+316-62
=562-62+316
=500+316
=816
6. 整百数和“零头数”
在计算时可以先把题中的数看成两部分:整百数和"零头数",然后把整百数与整百数相加减,"零头数"与"零头数"相加减。
例:
598+31-296-103
=500+98+31-200-96-100-3
=500-200-100+98-96+31-3
=200+2+28
=230
中年级组
1. 带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 结合律法
加括号法
(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括号法
(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 乘法分配律法
分配法
括号里是加或减运算,与另一个数相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因数的提取。
例如:
9×8+9×2=9×(8+2)
4. 凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。
例如:
99+9=(100-1)+(10-1)
5. 拆分法
拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
加法结合律
注意对加法结合律
(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
拆分法和乘法分配律
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的.时候,要首先考虑拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再现: 57×101=?
利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
速算8大技巧
1、个位数是“1”
速算口诀:头乘头,头加头,尾是1(头加头如果超过10要进位)
2、十位数是“1”
速算口诀:头是1,尾加为,尾乘尾(超过10要进位)
3、个位数都是“9”
速算口诀:头数各加1 ,相乘再乘10,减去相加数,最后再放1
4、十位数都是9
速算口诀:100减前数,再被后减数。100减大家,结果相互乘,占2位
5、头相同,尾互补(尾互补:尾数相加为10)
速算口诀:头乘头加1,尾乘尾占2位
6、头互补,尾相同
速算口诀:头乘头加尾,尾乘尾占2位
7、互补数乘叠数
速算口诀:头加1再乘头,尾乘尾占2位
8、其中一个是11
速算口诀:首尾都不动,相加放中间
⑤ 数学快速计算有哪些方法
乘法口诀你自然要背很熟了,否侧一切都是浮云。平时多记记下平方公式,在计算时非常有用的,其他的还是多练练,就到这里吧,下面是个简单的方法:
1、十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
2、例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
4、例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5、11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
6、十几乘任意数:
口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3
3×3+2=11
3×2+6=12
3×6=18
13×326=4238
注:和满十要进一。
⑥ 求速算技巧
速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。
1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;
2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
3、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
4、在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定。
(6)快速计算的方法扩展阅读:
注意事项
1、两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。
2、在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。
⑦ 多位数乘法的快速计算方法有哪些
多位数乘法的快速计算方法如下:
1、 十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。
2、 头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。
3、 第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。
4、 几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861
5、 11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。
乘法原理:
如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。
在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。
设 A是 m×n 的矩阵。
可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)
1、Ax=0 肯定是 A'Ax=0 的解,好理解。
2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0
故两个方程是同解的。
同理可得 r(AA')=r(A')
另外 有 r(A)=r(A')
所以综上 r(A)=r(A')=r(AA')=r(A'A)
⑧ 速算的方法与技巧
全脑速算
全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。
全脑速算的运算原理:
通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
例如:6752 + 1629 = ?
运算过程和方法: 首位6+1是7,看后位(7+6)满10,进位进1,首位7+1写8,百位7减去6的补数4写3,(后位因5+2不满10,本位不进位),十位5+2是7,看后位(2+9)满10进1,本位7+1写8,个位2减去9的补数1写1,所以本题结果为8381。
全脑速算乘法运算部分原理:
假设A、B、C、D为待定数字,则任意两个因数的积都可以表示成:
AB×CD=(AB+A×D/C)×C0+B×D
= AB×C0 +A×D×C0/C+B×D
= AB×C0 +A×D×10+B×D
= AB×C0 +A0×D+B×D
= AB×C0 +(A0+B)×D
= AB×C0 +AB×D
= AB×(C0 +D)
= AB×CD
此方法比较适用于C能整除A×D的乘法,特别适用于两个因数的“首数”是整数倍,或者两个因数中有一个因数的“尾数”是“首数”的整数倍。
两个因数的积,只要两个因数的首数是整数倍关系,都可以运用此方法法进行运算,
即A =nC时,
AB×CD=(AB+n D)×C0+B×D
例如:
23×13=29×10+3×3=299
33×12=39×10+3×2=396
加法速算
计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
减法速算
计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算
乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。
速算嬗数|=(a-c)×d+(b+d-10)×c,,
速算嬗数‖=(a+b-10)×c+(d-c)×a,
速算嬗数Ⅲ=a×d-‘b’(补数)×c 。 更是独秀一枝,无以伦比。
(1),用第一种速算嬗数=(a-c)×d+(b+d-10)×c,适用于首同尾任意的任意二位数乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗数一目了然分别等于“8”,“20 ”和“8”即可。
(2), 用第二种速算嬗数=(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗数也同样可以一目了然分别等于“2”,“5 ”和“0”即可。
(3), 用第三种速算嬗数=a×d-‘b’(补数)×c 适用于任意二位数的乘法速算。