❶ 如何培养学生的“数学思想方法”
一、培养了哪些数学思想:
1.符号思想。数学课程标准要求,在小学阶段要培养和发展学生的符号感,我们知道,运用一套合适的符号,可以清晰、准确、简洁地表达数学思想、概念、方法和法则,避免日常语言的繁复、冗长或含混不清,从而简化数学运算或推理过程,加快数学思维的速度,促进数学思想的交流。如讲到乘法的诸多运算律时,就把复杂的语言文字叙述用简洁明了的字母公式表示出来,便于记忆、便于运用。
2.数形结合思想方法。数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。如诸多的行程问题,我们就可以用线段图来清楚的让学生直接感知到总路程、已行路程和剩下路程之间的关系;再如分数应用题的解答,用圆形图或者线段图表示整体与部分的关系,让学生的解答问题是一目了然,显而易懂,对学生的思维和想象能力大有提高。
3.分类思想方法。分类思想也是对小学生培养的一种重要思想方法。一般分类时要求满足互斥,无遗漏、最简便的原则。如整数以能否被2整除为例,可分为奇数和偶数;若以自然数的约数个数来分类,则可分为质数、合数和1。几何图形中的分类更常见,如学习“角的分类”时,涉及到许多概念,而这些概念之间的关系培养着量变到质变的规律。其中几种角是按照度数的大小,从量变到质变来分类的,由此推理到在三角形中以最大一个角大于、等于和小于90°为分类标准,可分为钝角三角形、直角三角形和锐角三角形。而三角形以边的长短关系为分类标准,又可分为不等边三角形和等边三角形,等边三角形又可分为正三角形和等腰三角形。通过分类,建构了知识网络,不同的分类标准会有不同的分类结果,从而产生新的数学概念和数学知识的结构。
4.集合思想方法。现代的课堂教学,不仅仅要向学生传授知识,更为重要的是要把含在教材中的集合思想有意识地对学生进行培养,这样有利于培养学生的抽象概括能力,有利于提高学生分析和解决问题的能力。如:教学分类把某些具有共同属性的动物、植物和几何图形等分别用一个“圈”(封闭曲线)圈起来成为一个整体,这个整体就是集合。在教学求8和12的最大公约数时,可以制作课件或幻灯片,让学生从图中可以清楚直观地知道8和12的公约数是1、2和4,最大公约数是4,这样孕伏了交集的思想。
5.化归思想方法。就是在解决数学问题时,不是对问题进行直接进攻,而是采取迂回的战术,通过变形把要解决的问题,化归为某个已经解决的问题,从而求得原问题的解决。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,让学生初步学会化归的思想方法。如:教学圆面积的计算方法,这里要推导出圆面积公式,在推导过程中,采用把圆分成若干等份,然后拼成一个近似长方形,从而推导出圆的面积公式。这里把圆剪拼成近似长方形的过程,就是把曲线形化归为直线形的过程。
6.建模思想方法。所谓数学模型是对于现实世界的某一特定研究对象,为了某个目的,在作了一些必要的简化和假设之后运用适当的数学工具,并通过数学语言表达出来的一个数学结构。而数学建模思想就是把现实世界中有待解决或未解决的问题,从数学的角度发现问题、提出问题、理解问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,并综合运用所学的数学知识与技能求得解决的一种数学思想和方法。
二、我是怎样培养学生的数学思想的。
结合自己的教学实践,现在我向大家分享一下自己是如何在教学实践中培养和发展学生的各种数学思想的:
首先注重在知识形成过程中培养。像数学概念、法则、公式、性质等知识都明显地写在教材中,是有形的,而数学思想方法却隐含在数学知识体系里,是无形的,并且不成体系地分散在教材各章节之中。因此数学思想方法必须通过具体的教学过程加以实现。因此在教学中,我们要把握好在教学过程中对学生进行数学思想方法教学的契机,它时时应该渗透在每一个概念的形成过程中,每一种结论的推导过程中,每一道习题解题方法的思考过程、思路探索和规律揭示的过程中等,要有意识地潜移默化地启发学生领悟蕴含于数学知识之中的种种数学思想方法。
其次是要注重在问题解决过程中培养。数学思想方法存在于问题的解决过程中,数学问题的步步转化无不遵循着数学思想方法的指导。培养数学思想方法,不仅可以加快和优化问题解决的过程,而且还可以达到,会一题而明一路,通一类的效果。通过培养,尽量让学生达到对数学思想方法内化的境界,提高独立获取知识的能力和独立解决问题的能力。
再次是要注意在反复运用过程中培养。在解决学习重点、突破学习难点及解决具体数学问题中,数学思想方法是起着至关重要的作用,这些问题的解决过程,无一不是数学思想方法反复运用的过程,因此,时时注意数学思想方法的运用既有条件又有可能,这是进行数学思想方法教学行之有效的普遍途径.数学思想方法也只有在反复运用中,得到巩固与深化。总之,加强对学生数学思想方法的培养和训练,不仅是课程标准对我们提出的必然要求,也是为孩子学会学习提供的重要智力帮助,在平时的课堂教学中,重视加强对学生进行数学思想方法的培养不但有利于提高课堂教学效率,而且有利于提高学生的数学文化素养和思维能力。但是,我们也要清楚地认识到,对学生数学思想方法的培养,不是一朝一夕、一蹴而就的,而是需要有一个过程。因此,在教学过程中,要有机地结合数学知识的内容,做到持之以恒、循序渐进和反复训练,才能使学生真正地领悟数学思想方法。
❷ 怎样在小学数学教学中有效渗透数形结合思想方法
着名数学家华罗庚说过:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”这句话形象、简明、扼要地指出了数和形的相互依赖、相互制约的辩证关系。“数形结合”既是一种重要的数学思想,也是一种解决数学问题的有效方法。下面我就结合自己的教学实际谈谈小学数学课堂教学中应如何有效渗透数形结合的数学思想方法。
1 以形促思,在数的认识教学中,渗透数形结合思想方法,帮助学生很好地建立数感数感是一种主动、自觉或自动化的理解数和运用数的态度和意识,是对数学对象、材料直接迅速、正确敏感的感受能力。《数学课程标准》指出:“数感主要表现在理解数的意义;能用多种方法表示数。”例如教学《10 的认识》时,我请小朋友们认真观察图,从图中你知道了什么?让学生利用数数的经验上台现场数数后,学生明白10 个人、10 只鸽子都可以用数字10 表示。接着让学生摆小棒操作,知道一捆就是1 个十,所以10 个1 是十。接着我让学生找一找生活中哪些物体的个数可以用数字10 表示。最后让“10”宝宝参加数字排队队,0~9这几个数字宝宝已经按从小到大的顺序排好队了(出示尺子图),10 应该排在哪儿?请计数器来帮忙。学生动手操作先拔8 颗,再添一颗是几颗(使生能直观感觉到9 比8 多1)?9 颗再添上一颗是几颗?10 颗再去掉一颗是几颗(使生感觉到10 比9 多1)?10 应该排在哪儿?回到尺子图,让生猜猜9 的后面是几?请生分别按从小到大、从大到小的顺序读0~10 这几个数字。在以上教学中,我巧妙渗透数形结合的思想方法,使学生在对具体数量的感知和体验中,进一步强化了数感,加深了对数的意义的认识。
2 借形理解,在概念教学中,加强实验操作,渗透数形结合思想方法,使学生直观地理解概念数学概念是知识教学中的重要组成部分,在概念教学中,仅阐明其实际意义是不够的,还应从事物的整体、本质和内在联系出发,对概念进行进行全面分析,突出其本质属性,但它的抽象性、枯燥性使得教学效果不尽如人意,学生学起来比较困难。借助直观的图形、加强实验操作可以将概念教学趣味化、形象化,从而帮助学生在轻松、愉快的学习氛围中理解概念的形成过程。
例如:在《认识体积》的教学中,我通过3 个步骤渗透数形结合的思想方法,让学生借形直观地理解概念:2.1 通过实验,使学生体会到物体是占有空间的。教师出示两个一样的杯子,左边的盛满水,右边的放了一个柑果。请同学们猜猜,如果把左边杯子里的水倒入右边的杯子,结果会怎样?学生猜测,并通过实验来验证猜测是否是对的。学生倒水操作明白:原来两个杯子装的水是一样多的,现在放进去一个柑果,杯中有一部分空间被柑果占去了,能装水的空间就少了。使学生体会到物体占有一定的空间。
2.2 通过实验,使学生体会到物体所占的空间是有大有小的。出示两个完全一样的玻璃杯:一个杯子里放的是柑果,另一个杯子里放的是葡萄,如果往这两个杯子里倒水,倒进哪个杯里的水会多一些?学生猜测并再次实验操作,验证猜想:两个杯子能装的水同样多,柑果占的空间大,因而相应杯中的水就少;葡萄占的空间小,因而相应杯中的水就多。
2.3 揭示体积的含义。出示3 个大小不同的水果,这3 个水果,哪一个占的空间大?把它们放在同样大的杯中,再倒满水,哪个杯里水占的空间大?学生实验操作,明确:物体是占有空间的,一个物体越大,它占有的空间就越大,反之,一个物体越小,它占有的空间就越小。我们把物体所占空间的大小叫做物体的体积。学生举生活实例比较两个物体体积的大小,认识体积,我通过三部教学,加强实验操作,渗透数形结合思想方法,学生不仅借形直观地理解概念,而且能够应用概念。
3 看形想量,结合“量的计量”的教学渗透数形结合思想方法,帮助学生建立质量观念数学的主要研究对象是数与形。但在现实生活中,数与形和量与计量总是密切联系着的,学习数学必然要涉及量与计量。如何在量与计量中渗透数形结合呢?
例如《千克的认识》教学:①认识秤和秤面。观察秤面从秤面上看到了什么?②建立1 千克的质量观念。a.掂一掂,初步体验一千克的重量。分小组称一称2 袋盐,通过观察发规2 袋盐重1 千克。b.猜一猜,再次体验1 千克的重量。先猜一猜几个这样的苹果、桔子、桃子重1 千克,最后称一称,数一数1 千克这样的果到底有几个?c.比一比,加深对一千克的认识。师出示一个重2 千克大米,让几名学生拎一拎,说说感觉,猜猜重多少千克,通过比较进一步加深对1 千克的体验。
建立“千克”这个计量单位的观念,对学生来说比较抽象,渗透数形结合的思想方法,学生就很容易建立“千克”的表象,并能运用。
4 看数画形,在解决问题教学中,渗透数形结合思想方法,使解题过程具体化、明朗化数学家华罗庚曾说:“人们对数学早就产生了干燥无味、神秘难懂的印象,成因之一便是脱离实际。”数形结合的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。
例如学生初步认识分数时,通过数形结合的对应思想,帮助学生构建了整体“1”与部分量之间的关系,在各种图形的运用中,线段图的使用显得更为清晰方便,使学生能够一目了然地获取相关的信息和问题,直观形象地了解到各信息与问题之间的数量关系。
气象小组有12 人,摄影小组的人数是气象小组的13 ,航模小组的人数是摄影小组的34 。航模小组有多少人?很多学生在读完题后显得较为迷茫,觉得有些混乱,不知道从何开始思考,这时我引导他们与老师一起尝试用线段图来表示三者之间的数量关系。
运用数形结合画出图形,帮助学生分析数量关系,揭示本质,有助于学生逻辑思维与形象思维协调发展,相互促进,提高学生的思维能力,而且有助于培养学生的创新思维和数学意识,并能正确解题。摄影小组:12×13=4(人),航模小组:4×43=3(人)。
5 看“数”想“形”,在几何与图形教学中,渗透数形结合思想方法,使学生的空间观念得到培养在教学中我们都知道,虽然“形”有形象、直观的优点,但在定量方面还必须借助“数”来计算。
例如练习题:把一根长20 厘米,宽5 厘米,高3 厘米的长方体木料沿横截面锯成2 段,表面积增加多少?这样的题目一出现,学生就无从下手,不知道应该怎样计算?这时我就利用看“数”想“形”的数形结合思想,引导学生经历三个空间观念的建立解题过程:动手操作,画出一个长方体,才长方体上切2 段,看看表面积多了几个面,多的这几个面的面积合起来就是表面积增加的部分———教师实物操作,让学生验证自己所切的面是否与老师操作的一样———抽象概括,使物体的整体模型印刻在脑海中,从而空间观念在活动体验中得到培养和形成。
6 数形结合、数形互用,学生的思维能力得到提升在实际教学中,数和形往往是紧密结合在一起,相互并存的。数形结合、数形互用往往会启发学生展开发散思维。经过长期发散思维训练的学生,解题方法多样,思维灵活多变,往往能在发散的基础上产生奇特的思路,从而使解法变得十分简明扼要而且巧妙。
例如一年级上册教材中有一道思考题:小朋友们排队做操,小明的前面有8 个人,小明的后面也有8 个人,这一排一共有多少个人?
许多学生一看完题目就马上列式:8+8=16 人,他们对小明是不是也在队伍里面弄不明白,所以出现了错误。针对这种情况,我就指导学生画图解决问题:□□□□□□□□ 小明□□□□□□□□8 + 1 + 8 =17 人这样一画图,数形结合,数形互用,学生就一目了然,找出了自己出现错误的原因,能正确解答。
总之,在小学数学课堂教学中向学生有效渗地、巧妙地渗透并应用数形结合的数学思想方法,充分利用“一图抵百语”的优势,既能为小学数学教学开辟一片广阔的天地,又能为学生的终身学习和可持续发展奠定扎实的基础。
❸ 数形结合数学思想方法
小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。为初中数学学习打好基础,如确实位置中,用数对表示平面图形上的点,点的平移引起了了数对的变化,而数对变化也对应了不同的点。下面我给大家整理了关于数形结合数学思想 方法 ,希望对你有帮助!
1数形结合数学思想方法
“数”与“形”是数学的基本研究对象,他们之间存在着对立统一的辨证关系。数形结合是一种重要的数学思想,是人们认识、理解、掌握数学的意识,它是我们解题的重要手段,是根据数理与图形之间的关系,认识研究对象的数学特征,寻求解决问题的方法的一种数学思想。它是在一定的数学知识、数学方法的基础上形成的。它对理解、掌握、运用数学知识和数学方法,觖决数学问题能起到促进和深化的作用。
2数形结合数学思想方法
用图形的直观,帮助学生理解数量关系,提高教学效率
用数形结合策略表示题中量与量之关系,可以达到化繁为简、化难为易的目的。“数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和 抽象思维 的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材的一个重要特点,更是解决问题时常用的方法。 众所周知,学生从形象思维向抽象思维发展,一般来说需要借助于直观。
以数解形:有关图形中往往蕴含着数量关系,特别是复杂的几何形体可以用简单的数量关系来表示。而我们也可以借助代数的运算,常常可以将几何图形化难为易,表示为简单的数量关系(如算式等),以获得更多的知识面,简单地说就是“以数解形”。它往往借助于数的精确性来阐明形的某些属性,表示形的特征、形的求积计算等等,而有的老师在出示图形时太过简单,学生直接来观察却看不出个所以然,这时我们就需要给图形赋予一定价值的问题。
助表象,发展学生的空间观念,培养学生初步的 逻辑思维 能力。 儿童 的认识规律,一般来说是从直接感知到表象,再到形成科学概念的过程。表象介于感知和形成科学概念之间,抓住这中间环节,在几何初步知识教学中,发展学生的空间观念,培养初步的逻辑思维能力,具有十分重要意义。
数形结合,为建立函数思想打好基础。小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。为初中数学学习打好基础,如确实位置中,用数对表示平面图形上的点,点的平移引起了了数对的变化,而数对变化也对应了不同的点。此外,在六年二期学习的比例中,让学生通过描点连线来表示正比例函数的图象,发现成只要是正比例关系的式子,画在坐标图中是就一条直线。从而体会到图形与函数之间密不可分的关系。
3数形结合数学思想渗透方法
小学生都是从直观、形象的图形开始入门学习数学。从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类一开始用小石子,贝壳记事,慢慢的发展成为用形象的符号记事,最后才有了数字。这个过程和小学生学习数学的阶段和过程有着很大的相似之处。一年级的小学生学习数学,也是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。这方面的例子很多,如低年级开始学习认数、学习加减法、乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活 经验 ,在具体的表象中抽象出数,算理等等。
以形助数,揭示数量之间的关系,解决大量实际问题。如果说从图形上抽象出符号,只能代表人们的认知事物的过程,还不能体现其在数学中的独特作用。那么以形助数,善于在图形的分析中快捷地解决问题,思维层次不断上升。这就充分体现了“数形结合”在小学数学中用处了。数形结合的思想方法将小学数学中一些抽象的代数问题给以形象化的原型,将复杂的代数问题赋予灵活变通的形式,从而给人们思维灵活性的思维迁移训练,这正是反映了数形结合的思想方法解决数与代数问题的有效途径所在。
数形结合,为建立函数思想打好基础。
小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。为初中数学学习打好基础,如确实位置中,用数对表示平面图形上的点,点的平移引起了了数对的变化,而数对变化也对应了不同的点。此外,在六年二期学习的比例中,让学生通过描点连线来表示正比例函数的图象,发现成只要是正比例关系的式子,画在坐标图中是就一条直线。从而体会到图形与函数之间密不可分的关系。
数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。
4数形结合数学思想方法的作用
从新课程标准对“双基”的要求来看数形结合思想。首先引用一下《数学新课程标准》对数学中的“双基”的理解:教师应帮助学生理解和掌握数学基础知识、基本技能,具体来说是:强调对基本概念和基本思想的理解和掌握。对一些核心概念和基本思想(如函数,空间观念、运算、数形结合、向量、导数、统计、随机观念、算法等)都要贯穿高中教学的始终,由于数学的高度抽象性,要注重体现概念的来龙去脉,在教学中要引导学生经历从具体实例中抽象出数学概念的过程。
从新课程标准对思维能力的要求来看数形结合思想:数形结合思想能帮助学生树立现代思维意识:第一通过数与形的有机结合,把形象思维与抽象思维有机地结合,尽可能地先形象后抽象,不但能促进这两种思维能力同步发展,还为学生初步形成辩证思维能力创造了条件。第二通过数形结合,能够有的放矢地帮助学生 从多角度、多层次出发地思考问题,养成多向性思维的好习惯。第三通过数形结合引导学生变静态 思维方式 为动态思维方式,也就是以运动、变化、联系的观点考虑问题,更好地把握事情的本质。
从新课程数学内容的特点来看数形结合思想:数学,特别是现代形态下的数学,因其过于抽象,过于形式化、符号化而“不得人心”,它与人们的直觉经验相距十万八千里,给人一种“无感情”的面貌,加上它曲折而奥妙的逻辑推理,造成学生认知上的特殊难度,这也许是学生怕它,避开它的一个原因。然而在课堂教学中教师没有能够帮助学生摆脱这种由于数学自身的特点带来的困境,还是过于呆板地强调着逻辑思维能力,在教学中忽视对直观图形的利用,不能很好地利用具体形象来化解对书本中一些抽象的结论的理解。忽视学生形象思维的培养。学生对于现在这种过于陈旧的课堂教学模式不能产生“亲和感”,感到枯燥,厌恶,不少学生是为了高考而强迫自己去记忆一些内容,不能真正产生学习数学的动力。事实上教材中体现数形结合思想方法的内容很多,可以通过数形结合给代数提供几何模型,形象直观地揭示问题的本质,减轻学生学习的负担,从而引发学生学习数学的兴趣。
从高考题设计背景来看数形结合思想:先看一下前几年全国高考试题中对数形结合思想考查的比例情况;(1)2002年(全国数学文科卷);有8小题(第1、4、5、7、10、11、14、16)和3大题(17、20、21)共84分,占卷面总公的面分为56%。(2)2003年(全国卷);有5个小题(第3、9、10、12、14)和5个大题(第17、18、19、20、21)共计86分,占卷面总公百分比为57.3%。(3)2004年(全国卷);有5个小题(第7、8、9、15、16)和2个大题(第19、22)题,共计49分,占卷面总分比为32%。
数形结合数学思想方法相关 文章 :
★ 高中数学四种思想方法
★ 高中数学思想方法
★ 高中数学思想与逻辑:11种数学思想方法总结与例题讲解
★ 初三数学数形结合思想的运用
★ 高考数学题解法思想指引
★ 小学学习数学的17个思想方法
★ 提高数学成绩的四个方法
★ 高中数学学习的思想和法则
★ 数学教学方法渗透六大核心素养
★ 数学思维训练的学习方法