‘壹’ 量化交易主要有哪些经典的策略
研究量丛森化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参灶搭数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是渗辩亩多大?是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
‘贰’ 如何量化炒股
我在其中遇到很多烦恼,在量化投资中,不知道你是不是有这样的烦恼,下面是我的烦恼:
1、专业量化炒股工具太复杂,有没有适合普通股民的量化分析工具呢? 有自己的选股方法和参考指标,如何去验证是否能带来收益呢? 很多牛人都有自己的炒股策略,谁的才是真的好呢? 增减或替换选股指标,需要大量的数据运算,耗时费力,该如何避免呢?
不过这些问题数库多因子量化平台可以帮你解决,3分钟量化选股,做自己的股票分析师。
数库多因子量化平台是数库公司为了普及量化投资,为广大股民提供的新型可视化量化工具,通过寻找与股票未来收益最相关的因子作为选股标准,综合运用多因子构建模型对股票进行评价,选取综合得分高的股票,以期获得超额收益。
总结:无论你是小白还是专业人士,都可以在数库多因子量化平台上尽情施展自己的炒股策略,炒股变得不再乏味烦心,而是便捷高效,轻松实现高收益。
‘叁’ 如何量化炒股
首先,可以通过学习量化策略来进行,主要包括多因子策略、统计套利、机器学习。
量化交易是一种新兴的系统化金融投资方法,它综合多个学科的知识,用先进的数学模型代替人的主观思维制定交易策略,利用计算机强大的运算力从庞大的股票、债券、 期货等历史数据中回测交易策略的盈亏“概率”,通过管理盈亏的“概率”帮助投资者做出准确的决策。
此外,我们可以通过数库多因子量化平台进行炒股,它会呈现出影响股价走势的相关因子,让投资者从中选取影响力高的因子,组合成量化策略,进行收益对比分析,得出最理想的股票组合。还可以自由添加、删除、收藏多个因子,仅需几秒钟就可以完成大量的数据运算,操作方便快捷。
潜在风险
量化交易一般会经过海量数据仿真测试和模拟操作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险最小化和收益最大化,但往往也会存在一定的潜在风险,具体包括:
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。
‘肆’ 五步量化法包含哪些步骤
1、量化选股:量化选股就是采用数量的方法判断某个公司是否值得买入的行为。根据某个方法,如果该公司满足了该方法的条件,则放入股票池,如果不满足,则从股票池中剔除。量化选股的方法有很多种,总的来说,可以分为公司估值法、趋势法和资金法三大类。
2、量化饥如择时:股市的可预测性问题与有效市场假说密切相关。如果有效市场理论或有效市场假说成立,股票价格充分反映了所有相关的信息,价格变化服从随机游走,股票价格的预测则毫无意义。
众多的研究发现我国股市的指数收益中,存在经典线性相关之外的非线性相关,从而拒绝了随机游走的假设,指出股价的波动不是完全随机的,它貌似随机、杂乱,但在其复杂表面的背后,却隐藏着确定性的机制,因此存在可预测成分。
3、股指期货套利:股指期货套利是指利用股指期货市场存在的不合理价格,同时参与股指期货与股票现货市场交易,或者同时进行不同期限,不同类别股票指数合约交易,以赚取差价的行为,股指期货套利主要分为期现套利和跨期套利两种。
4、商品期货套利:商品期货套利盈利的逻辑原理是相关商品在不同地点、不同时间对应都有一个合理的价格差价。由于价格的波动性,价格差价经常出现不合理。不合理必然要回到合理。不合理回到合理的这部分价格区间就是盈利区间。
5、统计套利:有别于无前肢虚风险套利,统计套利是利用证券价格的历史统计规律进行套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。
‘伍’ 如何通过量化投资模型提高股票交易的效率与准确性
量化投资是利用数学模型与数据分析,做出投资决策并进行机器交易的过程。通过量化投资模型滚滚,可以提高股票交易的效率和准确性,具体方法如下:
1.制定投资策略:制定一套系统性的投资策略,以尽可能地消除人为因素,利用历史数据和市场行情,制定具有可操作性和可验证性的投资策略。
2.数据收集与清洗:收集和清洗相关的市场数据,并利用计算机程序自动化分析数据。
3.模型构建:根据数据分析,构建出能够预测市场行情的模迟备局型,并对模型进行验证和优化。
4.交易执行:通过计码让算机程序执行交易,利用算法进行预测和决策,自动化完成交易过程。
5.风险管理:通过设置止损、风险控制等机制,降低交易风险,保护投资资金。
综上所述,量化投资模型通过数据分析和计算机算法进行投资决策和交易,能够提高股票交易的效率和准确性,从而使投资者能够更加稳健地获取投资回报。
‘陆’ 散户如何应对量化交易
对于散户来说,量化交易是一悔老个“难缠的对手”。但是这个对手并非没有破绽,我们散户利用量化交易的破绽即可应对量化交易的对手盘。首先,量化交易的交易型机构,不少采用的是基于历史统计的深度学习策略,因此它们会对历史数据进行回测。针对这一点,散户需要做到先人一步,在确认基本面无问题的前提下,敢于在股票或基金的历史低位做买入动作,敢于在历史高位附近做卖出动作。其次,量化交易的优势在于交易速度,那么散户要尽量少做“和人拼手速”的冲动型交易,尽量基于股票的基本面、市场风向做有利于自己的波段交昌辩易。如此一来,量化机构就不会轻易地收割散户。再次,散户要认识到量化机构并不是“战无不胜”的。在近一段时间的耐前缺极端行情里,不少国内量化机构都遭遇了大量的净值回撤。因此,散户不要在心理上畏惧量化机构,要敢于与其进行博弈。
‘柒’ 如何量化市场风险并计算可能的损失
市场风险是指由于各种不可控因素(如政治、经济、自然灾害等)导致资产价格、利率、汇率等波动,从而导致投资组合价值下降的风险。
对市场风险的量化和计算可采用以下方法:
1.历史模拟法:根据历史数据,以往的波动情况对未来的波动做出预测,并计算出投资组合的可能损失。
2.方差-协方差法:通过预测资产的年化收益率和标准差(波动率),然后确定它们之间的相关性来估亮源档计投资组合的风险。使用这种方法,必须考裂行虑资产间的相关性和波动率。
3.蒙特卡罗模拟法:根据给定的概率分布和相关性,模拟大量的随机路径,以模拟未来风险并量化损失。
4.常例限制法:直接使用风险限制,如VAR(价值风险)和TVAR(条件价值风险)等限制,对投资组合风险进行控制。
在计算组合损失时,可以根据不同的敬乱置信度,对可能的最大损失进行估计,例如通过计算VaR(价值风险)或TVaR(条件价值风险)来分析投资组合损失。这种方法可以帮助投资者评估不同的投资组合风险并选择最优的组合。