① 如何才能简易检测水的杂质含量
如何检测饮水质量
准确地判断饮水好坏,是保证农民健康的主要措施之一。检测水质量最好的方法,是水质化验分析。但目前大部分农村缺少必要的仪器设备和技术条件,只能用一些简易可行的方法来判断水质,现介绍如下:
用眼看清洁的饮水应是无色透明,如水质颜色异常,则表明水质变坏。水质受到腐植质污染,可出现黄棕或黄褐色;受到锰盐、铁盐污染,则出现黄褐或铁锈色;水质混有藻类,呈黄绿色;混有泥沙粘土,混浊而有异常颜色。
用舌尝清洁的饮水应是无异常味道的。水的异味,大致可分苦、咸、酸、甜、涩等5种。水味是由水中含有某种化学物质和含有某些有机杂质形成的;异味的存在,说明水质变坏。水中含有氯化钠、氯化钾时,水味变咸变苦;含有硫酸钠、硫酸镁时,水味变苦;含有铁盐、锌盐时,水味变涩;含有某些金属氧化物、金属盐或某些有机物时,水味变甜;含有腐植质、有机物、藻类的江河水、水库水、坑塘水,则有鱼腥味、霉味等。
用鼻闻清洁的水是没有异常气味的,受到污染后,往往有异味。饮水被粪便污染可有粪臭味,受苯、甲苯等污染,可有芳香味,水中有含硫有机物,可有臭蛋味。根据水质气味特点,可判断污染源,为保护和处理水质提供条件。
查水温地面水的温度常随外界气候变化,而地下水温较为恒定。如果水温突然增高,则不论地面水或地下水,往往是污染的表现。当水质受到粪便、污物、动植物残体污染,这些有机物分解时,会放出大量热,使水温升高。从卫生角度讲,水温越低,水质越好。
查沉淀物被污染的饮水,通常含有较多的固体悬浮物和溶解性物质。因此,检查水中悬浮物和溶解物的含量,可作为衡量水质的重要指标。检查时,可将饮水装入透明玻璃瓶中,经过24小时沉淀,再观察瓶底的沉淀物;沉淀物多,则水质不清洁。
② 如何检测水的硬度
水总硬度是指水中Ca2+、Mg2+的总量,它包括暂时硬度和永久硬度。水中Ca2+、Mg2+以酸式碳酸盐形式存在的部分,因其遇热即形成碳酸盐沉淀而被除去,称之为暂时硬度;而以硫酸盐、硝酸盐和氯化物等形式存在的部分,因其性质比较稳定,不能够通过加热的方式除去,故称为永久硬度。 硬度又分为钙硬和镁硬,钙硬是由Ca2+引起的,镁硬是由Mg2+引起的。 水硬度是表示水质的一个重要指标,对工业用水关系很大。水硬度是形成锅垢和影响产品质量的主要因素。因此,水的总硬度即水中钙、镁总量的测定,为确定用水质量和进行水的处理提供依据。
水的总硬度测定的方法
一、原理
测定自来水的硬度,一般采用络合滴定法,用EDTA标准溶液滴定水中的Ca2+、Mg2+、总量然后换算为相应的硬度单位。
用EDTA滴定Ca2+、Mg2+总量时,一般是在pH=10的氨性缓冲溶液进行,用EBT(铬黑体)作指示剂。化学计量点前,Ca2+、Mg2+和EBT生成紫红色络合物,当用EDTA溶液滴定至化学计量点时,游离出指示剂,溶液呈现纯蓝色。
由于EBT与 Mg2+ 显色灵敏度高,与Ca2+显色灵敏度低,所以当水样中Mg2+含量较低时,用EBT 作指示剂往往得不到敏锐的终点。这时可在EDTA标准溶液中加入适量的Mg2+(标定前加入Mg2+对终点没有影响)或者在缓冲溶液中加入一定量Mg2+—EDTA盐,利用置换滴定法的原理来提高终点变色的敏锐性,也可采用酸性铬蓝K-萘酚绿B混合指示剂,此时终点颜色由紫红色变为蓝绿色。
滴定时,Fe3+,Al3+ 等干扰离子,用三乙醇胺掩蔽;Cu2+,Pb2+,Zn 2+ 等重金属离子则可用KCN、Na2S 或硫基乙酸等掩蔽。
本实验以CaCO3 的质量浓度(mg/L)表示水的硬度。我国生活饮用水规定,总硬度以 CaCO3计,不得超过450 mg/L。
计算公式:水的硬度= ×100.09(mg/L)式中C为EDTA的浓度,V为EDTA的体积,100.09为CaCO3的质量
二、试剂
1、EDTA标准溶液(0.01mo/L):称取2 g乙二胺四乙酸二钠盐(Na2H2Y.2H2O)于250 mL 烧杯中,用水溶解稀释至500mL 。如溶液需保存,最好将溶液储存在聚乙烯塑料瓶中。
2、氨性缓冲溶液(pH=10):称取20g NH4Cl固体溶解于水中,加100ml浓氨水,用水稀释至1L。
3、铬黑体(EBT)溶液(5g.L-1):称取0.5 g铬黑体,加入25mL 三乙醇胺、75 mL乙醇
4、Na2S 溶液(20g/L)
5、三乙醇氨溶液(1+4)
6、盐酸(1+1)
7、氨水(1+2)
8、甲基红:1g/L 60%的乙醇溶液
9、镁溶液:1gMgSO4.7H2O 溶解于水中,稀释至200mL
10、CaCO3基准试剂:120℃干燥2h。
11、金属锌(99.99%):取适量锌片或锌粒置于小烧杯中,用 0.1mol/LHCl清洗1min,以除去表面的氧化物,再用自来水和蒸馏水洗净,将水沥干,放入干燥箱中100℃烘干(不要过分烘烤,)冷却。
③ 水的流速如何检测
水的流速的检测方法如下:
1、薄壁堰法
测量精度较高,比较常用的有薄壁三角堰法、薄壁矩形堰法和薄壁梯形堰法。a、薄壁三角堰法适用条件:它适用于水头0.05 m ≤H ≤0.35 m、流量Q≤0.1 m3/ s 的水流量测。b、薄壁矩形堰法适用条件:测量过堰水深H时,应在堰口上游大于3H处进行。
2、巴氏槽法
具有水头损失小、不宜沉积杂物、量水精度高等特点。缺点是造价高、对施工质量要求也较高。适用条件:槽各部位尺寸符合标准槽要求,在设计安装时不能随意改变给定的标准尺寸;在进口的下游应有不小于0.2m的跌水。
3、容积法
在一段时间内,使渠道内的污水引入体积经过率定的容器中,用时间终了与起始时刻相对应的水量净体积差△V除以时段差△t,结果即流量Q,重复测量数次,取平均值。适用条件:流量较小,排水渠道不规范。
4、流量计法
选用有针对性的专业流量计进行测量。根据流量计的结构原理,可分为以下几种类型:容积式流量计、叶轮式流量计、差压式流量计、电磁流量计、超声波流量计等。
5、流速仪法
用流速仪测定水流速度,并由流速与断面面积的乘积来计算流量的方法。流速仪法的测量成果可作为率定或校核其他测流方法的标准。适用条件:在水深大于10cm、流速不小于0.05m/s时,可用流速计测量流速。
6、浮标法
一种简便的测流方法,根据观测浮标漂移速度,测量水道横断面,以此来推估断面流量。适用条件:渠道长度不小于10米、无弯曲、底壁平滑。
④ 地下水水位
地下水水位监测主要测量含水层水位的埋藏深度,也就是从地面到含水层水面的垂直深度。对于潜水含水层即测量地面到潜水面的垂直深度;对于承压水含水层则是测量地面到钻孔揭露承压水含水层时井孔中水面的垂直深度。
20世纪50~80年代,地下水位的测量是地下水监测的主要项目。截至目前,中国绝大部分地区的地下水位监测还是依靠人工手动测量。人工监测方法有测钟法、音响式水位计、灯显式水位计、指针式水位仪、浮标式水位计、感应水位仪、半自动测井仪、自记水位仪、三用电导仪和全自动水位水温仪等。
一、测钟法
该方法用到的测钟是最古老的地下水水位测具(图2-1)。测钟钟体是长约10cm的金属中空圆筒,直径数厘米,圆筒下端开口,上端封闭,并系测绳。测量时,人工将测钟、测绳放入井中,当测钟放至地下水面时,上下提放测钟。测钟开口端触及水面时会发出“砰、砰”的撞击声,由此即可判断水面位置,读取测绳上的刻度,即测得地下水埋深数值。另外,测钟在生产中,常与水温计组合在一起。
图2-1 测钟(左为水位、水温同测测钟原理图,右为水位测钟原理图)
此方法简单,但由于判断测钟接触水面会产生误差,同时测绳的长度也存在误差,监测数值不会很准确。开泵抽水的生产井,机械干扰声音大,另外,州盯地下水水位太深时(超过30m),响声听不清,亦会影响测量结果。另外测钟没有规格产品。目前国内大部分地区仍然广泛使用其衍生产品。
二、悬锤式水尺读数法
这种测量地下水水位的设备也常被称为“悬锤式水位计”、“水位测尺”。设备由悬锤、测尺、水面接触指示器(音响、灯光、指针)、测尺收放盘等组成。测尺是一柔性金属长卷尺(或测绳),其上附有端点与卷尺(或测绳)0点对齐的两根导线,卷尺上有准确的刻度。悬锤有一定质量,下端有两个相互绝缘的触点,且分别与两根导线相连。监测时靠悬锤自重将测尺人工放入井口中,触点接触地下水面时,电阻变小(导通),地上与2根导线相连的音响、灯光、指针指示发出信号,表示已到达地下水水面,从测尺上读出读数,可以知道地下水水位埋深。工作原理见图2-2。该测量方法使用的仪器简单,便于携带,对使用者的熟练程度要求不高,可以用于各种地下水水位的观测。由于能很准确地指示地下水水面的位置,水位测量准确性较高。测尺的长度不受限制,可以用于不同的地下水水位埋深与变幅的观测。水位指示器可用音响、灯光、指针形式,均由直流电池供电。
图2-2 悬锤式水尺工作原理图
三、浮标式水位计法
浮标式地下水位计(图2-3)是由具有感应水位变化的浮标、悬索、水位轮系统、平衡锤,埋碰或者用自收悬索机构取代平衡锤构成。早期的长期水位记录用长图纸带画线方式,目前已基本不使用。现在的产品用编码器将水位值编码输出供固态存储记录。一般的产品,其编码器在地面上;先进的产品,整个仪器,包括水位感应、册液和编码器、固态存储、电源等所有部分都悬挂在井中水面上自动工作。浮标式地下水位计一般都能在108mm口径的测井管中工作,有些可装在50mm口径的井内工作,水位轮、浮标、平衡锤的直径都很小。浮标感应水位变化的灵敏度较差。地下水埋深较大,悬索长,也影响水位感应灵敏度。因此,地下水位计的记录组件,编码器的阻力应尽可能小,应避免悬索和水位轮之间打滑,应优先选用带球钢丝绳、穿孔带作为悬索。浮标式水位计结构简单、可靠,便于操作维护。只要测井口径满足安装要求,便可以用于所有地点,水位测量的准确性也较高。地下水埋深较大时,尤其要注意悬索、水位轮的配合,了解和控制可能产生的误差。
四、感应水位计法
感应水位仪(图2-4)由井下电极、导线、信号灯、晶体管元件等构成,电源交直流两用。使用方法简单便捷,当井下电极接触水面时,信号灯显示,同时电表指示已到水位,从测尺上读出读数,即可知道地下水水位埋深。
该方法是比较直接和简单的水位测量方法,目前野外工作多用此法。测绳易于携带,刻度便于直接读取数据。部分测绳可以直接测量电导率和水温。
图2-3 浮标式水位计
图2-4 无感应水位仪
五、半自动测井仪法
半自动测井仪由计数轮与计数表组成自动读数部分,由晶体管、指示灯、电极组成信号部分(图2-5)。该仪器使用方法简单便捷,测量水位时,将接地线连接地面或井口,调整计数表至零点,然后将导线下入井内,导线接触水面后,导线导通,以指示灯灯亮为准读取水位深度。该仪器适用于各种钻孔和生产井,可直接读出水位深度,不必经常校准导线长度标记。
图2-5 半自动测井仪
六、自动水位水温仪法
自动水位水温仪由压力传感器、温度传感器、电缆线、数据连接线和数据传输装置构成(图2-6),适用于大范围地下水日常监测及数据传输的工作需要。该仪器可连续测量井(孔)中地下水水位和水温。仪器适用环境温度一般为-20~80℃。存储空间较大,当测量工作需要在10min测量一次数据时,可以连续存储12个月的监测数据。该方法便于技术人员在室内观测地下水水位动态,减少天气或路途等因素对地下水监测的影响。
图2-6 自动水位水温仪
七、超声波式水位仪法
对准井口向下发射超声波,通过水面反射回波在空气中的传播时间由显示表直接读数,或通过数据接口由计算机进行数据回收。该仪器适用于水位埋深较浅的地区,适宜快速一次性观察及连续且频繁变化的水位观测,但其缺点是受外部环境影响大(图2-7)。
图2-7 超声波式水位仪工作示意图
⑤ 用物理方法如何测检测水质
关于水质物理性质的检测
1、水温
可用温度计来测定,最普遍的温度计有水银温度计,在一些特殊的场合如深层水的温度测定也可以选用颠倒温度计,颠倒温度计一般装在采水器上,由主温表和副温表组成,主温表观测水温,副温表观测气温,已校正因环境温度改变而引起的主温表读数的变化,测试时随采水器伸入预定深度,放置5~7min,提出、读数。
2、浊度
所谓浊度是指水的混浊程度。水的浊度是由于水中含有泥沙、粘土、有机物、浮游生物、微生物等悬浮物质引起的。水中所含的杂质中,除呈溶解状态的分子、离子和其他粒子外,其它全部物质都是使水呈混浊的原因,混浊度是水样对光线散射和吸收所产生的一种光学现象。饮用水的浊度不仅影响水的外观,更重要的是产生混浊的物质中容易隐藏病原微生物,因此,饮用水的水质对浊度有严格要求(≤30,特殊情况≤50)。
某些工业用水也不能太混浊,如冷却水浊度太高易堵塞冷凝器和管道。地面水浊度太高,有些是由于泥沙造成的,如黄河水浊度可达几十克/升,通常称之为高浊度水。但有的也可能是由工业污染造成的。因此,在选择给水水源时必须测浊度。
浊度的测定方法有以下几种:
目视比浊法:将水样与硅藻土(或白陶土)制成的浊度标准也进行比较。
定义1mg一定粒度(<150目)的硅藻土在1升蒸馏水中所形成的混浊度为10,配成一系列的标准来对比。
分光光度法:将硫酸肼与六次甲基四胺聚合物形成白色的高分子聚合物,以此作为参比浊度液,用3cm比色皿在660nm处测吸光度,配成标准系列并与水样进行比较。
浊度仪法:浊度仪是通过测量水样对一定波长光的透射或散射强度而实现浊度测定的专用仪器,有透射光式浊度仪、散射光式浊度仪和透射光—散射光式浊度仪。
3、色度
水的色度往往是由于水中融入的各种腐殖质、各种有机物及无机杂质所引起的,另外,工业污水也可引起水的色度。水色分为真色和表色。简单说表色是可以去除的,是由于水中悬浮物质引起的,真色则是溶解性物质引起的,水样的色度是指真色,即去除了悬浮物质后水显的颜色。无论是饮用水还是工业用水都不希望有颜色,因此,色度是衡量水质好外的重要指标。
A、铂钴比色法:用氯铂酸钾和氯化钴的混合液作为标准溶液,规定1升蒸馏水中1mg氯铂酸离子形式存在的铂和0.5mg钴离子所形成的颜色为10。测量时用目视比色法。若水样混浊,可放置澄清或离心澄清后目视比色,
但不能用滤纸过滤。该法适用于较清洁地面水及地下水(带黄色调),不适用于污染严重的工业污水。
B、稀释倍数法:该方法适用于受污染的地面水和工业污水颜色测定。取一定量的污水样品置于100mL或50mL比色管中,用蒸馏水反复稀释到刚好看不到颜色为止(和蒸馏水一样颜色),稀释水的倍数为水样的色度,单位为倍。
4、臭味
臭味是检验源水和处理水中水质必测项目之一,可追踪污染源和判断水处理效果。臭味来源于生活污水和工业污水中的污染物、天然物质的分解或微生物的活动。无臭无味的水虽然不能保证不含污染物,但有利于使用者对水质的信任,也是人类对水的美学评价的感官指标。其主要测定方法有定性描述法和阈值法。
5、残渣
水中的残渣分为,总残渣、可滤残渣和不可滤残渣三种。它们是表征水中溶解性物质和不溶解性物质含量的指标。
总残渣:总残渣是水或污水样在一定的温度下蒸发、烘干后剩余的物质,包括不可滤残渣和可滤滤残渣。
可滤残渣(含盐量):可滤残渣量是指将过滤后的水样放在称至恒重的蒸发皿内蒸干,再在一定温度下恒重所增加的重量。
不可滤残渣[悬浮物(SS)]:将经过滤后留在滤纸上的物质,在103~105℃烘箱内烘至恒重。
6、电导率
电导率是常用于推测水中各种离子总浓度或含盐量的一个指标。常用微西门子/厘米(S/cm)作单位。水的纯度不同,其电导率值也不相同。电导率是监测水体被无机盐污染情况的水质指标之一。
7、浊度
浊度(turbidity)是由于水中含有泥沙、粘土、有机物、无机物、生物、微生物的悬浮体造成的。浊度的测定方法主要有分光光度法(适用于高浊度水)、浊度计测定法(利用浑浊液对光的散射原理而制成)和目视比色法(适用于低浊度水)等,同时可以查看中国污水处理工程网更多关于污水检测的技术文档。
⑥ 家用净水器如何检测净化后的水质
检测水质的方法有:
1、检测水中的余氯:
先准备余氯测试剂,然后准备两杯15ML水,一杯是净化后的水,一杯是普通的自来水,分别在两杯水中加入2滴的余氯测试剂,水的颜色就会握大发生变化,余氯测试剂的说明书上有余氯颜色对比卡,按照水的颜色找到对应的颜色图案,就知道余氯的含量了。还可以把两杯水进行颜色对比,颜色深的余氯含量较高。
2、检测水中的有机物细菌病毒:
影响水质的不仅仅是余氯,更多的是有机物、重金属等污染,要检测这些污染是否已被净水器去除,我们需要用到水质电解器。同样我们先准备两杯水,一杯为净化水,另外一杯为自来水,然后我们把水质电解器的铝棒和铁棒放入水中,插上电源按上开关,通电0.5-1分钟左右,再断开电源,这时我们会发现两杯水的颜色发生变化。水的颜色越浅,水质就越好,反之就越差。我们还可以根据水的颜色与电解水质说明书上颜色对比,判断出水中含哪一种杂质还比较多。
3、TDS值检测:
世面上还有一种检测水质的工具-TDS笔,我们先来了解TDS的概念,TDS即为溶解的固体总量,单位为毫克/升。水中溶解的固体越多,那么水的TDS值就越高,水质也就越差。检测水的TDS值我们通常用TDS笔,使用方法很简单,只要将笔头插入水中,电子显示屏数值稳定以空如后,按住HOLD键即可。数值越低,水的纯度越高。一般纯水机过滤水的TDS值为20左右。太高则不正常,可能是纯水机失效或TDS笔质量问题。
(6)如何检测水的机械方法扩展阅读
检测指标
1、色度:饮用水的色度如大于15度时多数人即可察觉,大于30度时人感到厌恶。标准中规定饮用水的色度不应超过15度。
2、浑浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。浑浊度的降低就意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅可提高消毒杀菌效果,又利于降低卤化有机物的生成量。
3、臭和味:水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。公共供水正常臭味的改变可能是原水水质改变或水处理不充分的信号。
4、肉眼可见物:主要指水中存在的、能以肉眼观察到的颗粒或其他悬浮物质。
5、余氯:余氯是指水经加氯消毒,接触一定时间后,余留在水中的氯量。在水中具有持续的杀菌能力可防止供水管道的自身污染,保证供水水质。
6、化学需氧量:是指化学氧化剂氧化水中有机污染物时所需氧量。化学耗氧量越高,表示水中有机污染物越多。水中有机污染物主要来源于生活污水或工业废水的排放、动植物腐烂分解后流入水体产生的。
7、细菌总数:水中含有的细菌,来源于空气、土壤、污水、垃圾和动植物的尸体,水中细菌的种类是多种多样的,其包括病原菌。我国规定饮用斗皮启水的标准为1ml水中的细菌总数不超过100个。
⑦ 水分测定有哪几种主要方法各有什么特点
经典水分分析方法已逐渐被各种水分分析方法所代替,目前市场上主要存在的水分测定仪
主要有卤素水分仪、红外水分仪、露点水分仪、微波水分仪、库仑水分仪、卡尔•费休水分测定仪,以及一些专用水分仪。这些仪器测定方法操作简便、灵敏度高、再现性好,并能连续测定,自动显示数据。
1、红外水分测定仪操作简单,耗时少,测量结果准确,故红外水分仪可广泛应用于化工、医药、食品、烟草、粮食等行业的实验分析和日常进货控制及过程检测。
2、卡尔•费休法属经典方法,又称为 微量水分测定仪,其主要应用于水分值含量较低的样品检测,经过近年来改进,大大提高了准确度,扩大了测量范围, 已被列为许多物质中水分测定的标准方法。
3、露点水分测定仪操作简便,仪器不复杂,所测结果一般令人满意,常用于永久性气体中微量水分的测定。但此法干扰较多,一些易冷换气体特别在浓度较高时会比水蒸气先结露产生干扰。
4、微波水分测定仪利用微波场干燥样品,加速了干燥过程,具有测量时间短,操作方便,准确度高、适用范围广等特点,适用于粮食、造纸、木材、纺织品和化工产品等的颗粒状、粉末状及粘稠性固体试样中的水分测定,还可应用于石油、煤油及其他液体试样中的水分测定
5、库仑水分测定仪常用来测定气体中所含水分。此法操作简便,应答迅速,特别适用于测定气体中的痕量水分。如果用一般的化学方法测定,则是非常因难的事情。但电解法不宜用于碱性物质或共轭双烯烃的测定。
⑧ 流量检测的方法
主要断面流量方式种类
目前进行流量自动测量的方式有以下6种:缆道测流、声学多普勒流速(ADCP)、超声波时差法测流、水工建筑物(涵闸)推算流量、水位比降法推算流量、雷达水表面波流速测量再推算流量。
缆道自动测流
1、缆道自动测流
缆道测流是适合我国国情的一种测流方式,经 50多年发展,技术设备较为成熟,其中全自动缆道测流系统测流精度可达到95~98%。该方法由人工一次性启动缆道测流装置后,可自动测量全断面测点流速和垂线水深,并自动计算出断面面积和流量。由于缆道测流的测量精度较高,且不需要进行率定,在系统工程中主要是用于不规则断面的流量测量,实现对主要测流断面的流量控制。
超声波时差法测流
2、超声波时差法测流
超声波时差法测量流速国内外均有定型产品用于管道和渠道,但国内没有定型生产用于天然河流的产品。本方法能方便地解决断面不同水层的平均流速测量,充分利用电脑技术将超声波时差法测流、超声或压力水位计和预置河床断面等技术集于一体后,可构建实时在线的流量测量系统,该方法适用于断面较稳定,
有一定水深的河道,还需要借用断面面积参数(另用人工方法测量)和用流速仪等标准测流设备标定流量计算模型后,才能正常启用,其建站总投资大于缆道测流站。
超声波时差法自动测流站工作原理为在测量断面上设置单层或多层超声波换能器斜交叉布置在河两岸,超声波换能器由二次仪表控制,从河道的一岸顺流发射超声波,另一岸接收,然后再反向进行工作,根据顺、逆流传输测到的时间差计算出相应水层的平均流速,另外一换能器向上发射超声波,遇到水面时反射再由同一换能器接收回波,根据时间差测出水深(也可选用压力水位计测量出水深)。如果是规则断面则通过水位算出断面面积,通过流速积分和人工标定的流量系数可计算出流量,其流量精度可达5%以内。若为不规则断面则必须根据数据建立数学模型,根据测量数据计算流量或通过人为标定流量系数计算流量。
该仪器的最大特点是在线连续测量,缺点是在断面较宽、水浅和含沙量较高的条件下无法使用。另外,由于换能器是安装在河的两岸,二次仪表只能放在某一岸,而另一岸的换能器信号线则必须从河底或高架过河。如果从河底过施工难度较大,无疑增加了工程量和投资。再则超声波时差法测流,易受行船影响,致使测流精度降低。
3、声学多普勒流速测流声学多普勒流速测流
声学多普勒流速测流
声学多普勒流速测流是英文Acoustic Doppler Current Profilers 的简称,是利用声学多普勒原理进行研制的,是目前世界上最为先进的河流流速流量实时测量设备,自1981 年在美国诞生以来,随着技术不断进步和日益完善,已从海洋测量逐步应用于河流流量测量,测量精度也得到很大的提高。从最初的盲区1 m 以上,降低到所谓的“零盲区”,剖面单元缩小到目前的0.05~0.25m ,使其在宽浅河流上的应用成为可能。
该种方法又分为2种,即走航式声学多普勒流速声学多普勒流速
(1)声学多普勒流速法
DX- LSX- 1多普勒超声波流量计流速测量基于多普勒效应,探头斜向上发出一束超声波,超声波在流体中传播,流体中会含有气泡或者颗粒等杂质(可以认为流体中的杂质和水流的速度一致),当超声波接触到流体中的杂质时会使反射的超声波产生多普勒频移Δf, 多普勒频移Δf正比于流速。通过测量多普勒频移Δf即可测量出流体的流速。利用声波在流体中传播的多普勒效应,通过测定流体中运动粒子散射声波的多普勒频移,即可得到流体的速度,结合内置压力式水位计,利用速度面积法,即可测量液体的流量。适合于明渠、河道及难以建造标准断面的流速流量测量以及于各种满管和非满管明渠流速流量测量。声学多普勒测量仪最大优点是安装方便,可靠性高,价格低廉,比较适合河道测流。所有功能集于一身的设计,同时测量平均流速、水深、水温采用速度面积法测流,无水头损失,不需建设标准堰槽。采用超声波多普勒原理测流速流量,测量精度高,起始速度低。无机械转子结构,对水流状态无影响,测量更精准。自带温度传感器,可用于补偿水温对声速的影响。可测量瞬时流量和累积流量。采用频域多普勒分析算法,数据稳定可靠,实时性强。安装简单,不需辅助工程设施
(2)走航式声学多普勒流速测流法
走航式声学多普勒流速测流法是一种需渡河载体(如小船)的游动式测流设备,因为它一次能同时测出河床的断面形状、水深、流速和流量,适用于大江大河的流量监测。
该流量计的主机和换能器装在一防水容器内,工作时全部浸入水中,通过防水电缆与便携式计算机相连,流量计的操作控制在便携式计算机上进行。全套系统由蓄电池供电,也可以用交流供电,流量计的换能器一般由3个或4个发射头构成,它们可以向水下发射在空间互成一定角度的3束或4束超声波(4束超声波最佳),这些超声波在由水面射向河底的穿行过程中不断地经水中的固体颗粒、气泡和河底反射回来。根据这些返回信号的频率可以测出流量计和各水层以及河底的相对位移速度,其中流量计与河底的相对速度即是船速,扣除船速便可以求取各层水流对河底的流速。根据河底返回速度分量结合测得的船行方位便可求取水流的真实方向。根据河底返回信号的时间测出水深。流量计由河这岸向对岸穿行测量一次,便可测出经过各点的水深以及流速的大小和方向,将流速矢量对河
床水流断面进行积分,便得到了河床流量。因为采用的是矢量积分,所以所测流量的大小与流量计渡河路径无关。
4、水工建筑物涵闸))流量测量
关系曲线求出对应的过水流量。其优点是只要准确地测量出上下游水位及闸门开度,即可换算出过流量,但不足之处是需人工进行标定,确定经验公式的相关系数。
典型的闸流流量公式:
Q=CBH03/2
式中:C 为流量系数,B 为过水总净宽,H0为上游水头
典型的孔流流量公式: Q=MA√Z
式中:A 为过流断面,Z 为上下游水位差,M 为综合流量系数
由于受水工建筑物的结构、闸门形状和下游出水口的流态等多种因素影响,流量系数不易准确确定,需要通过人工测量来确定流量关系曲线,测量精度不高。
5、比降法
通过测量河流上一段距离的上下游水位及水面坡度,设定的河流的糙率系数,根据曼宁经验公式推算流量。当测流河道的水流不是自由流,水位受上下游水工建筑物的影响较大时就无法推算流量。另外,此方法精度不高,在比降不大的河段更是不准确。故本方法在此是不可行的。
6、雷达水表面波流
通过测量河流几点水表面流速,再由水表面流速推算河道流量。此方法精度不高,受外界因素影响较大,如风,下雨等。另一关键因素是雷达测速仪在水表面流速低于0.5米时已无法测量米时已无法测量,,所以用雷达测速仪做在线实时监测很难实现所以用雷达测速仪做在线实时监测很难实现。。
2.2 测流方法比选
综述3.1.1,前3种及第6种方法属于流速面积法,4、5二项属于水位~流速关系法。在天然河流或渠道上,流速面积法是比较准确的流量测验方法。但真正能做到实时自动测量流量的只有声学多普勒测量法