㈠ 回忆求字母取值范围的方法在分式和二次根式中如何求字母的取值范围请同学们举
分式中字母的取值范围就是分母不为0。例如,
分式(2x+3)/(3x-2)中,x的取拍卜值范围就是x不等于2/3。
二次根式中字母的取值范李贺桐围就是根式哪坦内要大于等于零。例如,
根号(4-x^2)中x的取值范围就是4-x^2要大于等于零,即
-2小于等于x小于等于2。
㈡ 分式计算要注意的点有哪些,方法有哪些
1.分式加减法法则
(1)通分:把异分母的分式化为同分母分式的过程,叫做通分
(2)同分母分式的加减法法则:同分母的分式相加减,分母不变.分子相加减.用字母表示为:
(3)异分母分式的加减法法则:异分母的分式相加减,先通分.变为同分母的分式后再加减.用字母表示为:
2.分式的化简
分式的化简与分式的运算相同,化简的依据、过程和方法都与运算一样,分式的化简题,大多是分式的加、减、乘、除、乘方的混合题,化简的结果保留最简分式或整式.
3.分式的求值题
近几年出现在中考题中的求值题一般有以下三种题型:
(1)先化简,再求值;
(2)由已知直接转化为所求的分式的值;
(3)式中字母所表示的数没有明确给出,而是隐含在已知条件中,解这类题,一方面由已知条件求出字母的取值,另一方面化简所给出的分式,只有双管齐下,才能找出最简便的算法.
分式的约分与分式的通分是分式运算中最基本的两种变形,通过前面的学习明确了约分的关键是寻求分子、分母的公因式,约分在分式的运算中起着不可替代的作用.
问题:通分有哪些应注意的问题,通分与约分之间又有哪些区别与联系呢?
探究:通分的关键是确定几个分式的最简公分母,其步骤如下:①将各个分式的分母分解因式;②取各分母系数的最小公倍数;③凡出现的字母或含有字母的因式为底的幂的因式都要取;④相同字母或含字母的因式的幂的因式取指数最大的;⑤将上述取得的式子都乘起来,就得到了最简公分母。如分式 , 的最简公分母为15a2b3c2,通分的结
果为
老师:学习了通分和约分后,你能总结出通分和约分的区别和共同点吗?
小明:通分与约分虽都是针对分式而言,但却是两种相反的变形.
小勇:约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,把各分式的分母统一起来.
小刚:通分和约分都是依据分式的基本性质进行变形,在变形中都保持分式的值不变.
老师:一般地,通分结果中,分母不展开而写成连乘积的形式.分子则乘出来写成多项式,为进一步运算作准备.
㈢ 分式的运算法则
分数的运算法则:
1.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
2.分数乘整数法则:用分数的分子和整数相乘的积作分子,分母不变。
3.分数乘分数法则:用分子相乘的积作分子,分母相乘的积作为分母。
4.分数除以整数(0除外),等于分数乘以这个整数的倒数。
5.一个数除以分数,等于这个数乘以分数的倒数。
6.分数计算到最后,得数必须化成最简分数。
7.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
拓展资料:
一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。
定义
形如的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。无需考虑该分式是否有意义,即分母是否为零。由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件
分式有意义条件:分母不为0。
2.分式值为0条件:分子为0且分母不为0。
3.分式值为正(负)数条件:分子分母同号得正,异号得负。
4.分式值为1的条件:分子=分母≠0。
5.分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。