统计检验的真核应该就是选取有代表性的样本,然后去节省人力、物力的前提下,去推断总体的一些性质、是否有差异的等。其余别的什么分布的,楼上回答的不错。其实重难点基础备考统计这部分写的很好。注意是正态分布,而不是Z分布。
B. 统计学检验方法有哪些
统计学 各种应用条件、校正条件
应用检验方法必须符合其适用条件,不同设计的数据应选用不同检验方法。 一、第五章 参数估计 P74 总体均数的置信区间 1.正态近似法:
总体标准差σ已知,或σ未知但n>50时 2. t分布法
总体标准差σ未知,且n≤50时
二、第六章 计量资料两组均数t检验P93、P99 (一)t 检验的应用条件
适用于计量资料(单样本、两配对样本、两独立样本),并要求: 1. 样本来自正态分布的总体。W检验(n≤50时),H0:样本来自正态总体,P>0.05时尚不能认为两组资料的分布非正态;
2. 两独立样本均数比较时,两总体方差齐性。Levene检验,H0:方差相等。P>0.05时尚不能认为两组资料方差不齐。
(二)方差不齐或非正态时,两计量资料均数的比较方法 方法1. 仅方差不齐时,可采用近似t检验,即 t′检验。 方法2. 变量变换:对数变换、平方根变换、倒数变换等
方法3. 非参数检验:Wilcoxon符号秩检验(两相关样本P142);Wilcoxon秩和检验、Mann-Whiney-U检验(两独立样本 P145)等
三、第七章 计量资料多组均数的比较-方差分析 (一)方差分析流程 P109
1、多个样本均数比较。若P<0.05,均数不全相等,则进行第2步;
2、作多重比较:LSD-t检验、Dunnett-t检验(多个实验组与一个对照组比较)、SNK-q检验(多个均数间全面比较)
(二)方差分析的应用条件 P114
1、各样本相互独立,服从正态分布;W检验 2、各样本方差齐性。Levene检验
四、分类资料(计数资料)的比较-
C. 什么是统计检验怎么选择统计检验方法
通过样本统计量得出的差异判断总体参数之间是否存在差异.对于平均数的显着性检验,总体正态,总体方差已知时,用Z检验.总体方差未知时用t检验,对于平均数差异的显着性检验,总体正态,总体方差已知时,用Z检验.总体方差未知时用t检验,但在总体方差非齐性闭尘,且样本独立,样本数不同时,用t'检验.对于非正态分布,且样本数大于30的用Z'检验.对于样本方差与总体差异检验用卡方分布,对于两样本方差间的差异显着性用F检验.对于多个统闹态颂计量的差异检验如果满足方差分析条件的用方差分析.其它对于不满足参数检验的用非参检验.卡方检验一般都液郑是处理实际观察频数与理论频数分布是否一致 查看原帖>>
D. 如何判断一组应该选择何种统计方法
哎,误区啊,其实统计方法是在你做实验之前就应该设计好的。而不是做完再来想怎么分析。
E. SPSS软件进行数据分析时,如何选择检验方法
方法/步骤
1、首先,打开或者是新建一组数据,这里是打开一组案例分析中的数据进行分析。
F. 统计分析方法 有哪些统计分析方法
1、描述统计。描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
(1)缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
(2)正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
2、假设检验
(1)参数检验。参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。U验 使用条件:当样本含量n较大时,样本值符合正态分布。T检验 使用条件:当样本含量n较小时,样本值符合正态分布。单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
(2)非参数检验。非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。虽然是连续数据,但总体分布形态未知或者非正态;体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
3、信度分析
检査测量的可信度,例如调查问卷的真实性。分类:
(1)外在信度:不同时间测量时量表的一致性程度,常用方法重测信度
(2)内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
4、列联表分析。用于分析离散变量或定型变量之间是否存在相关。
对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。
5、相关分析
研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
(1)单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;
(2)复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;
(3)偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。
6、方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
(1)单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系
(2)多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
(3)多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
(4)协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,
G. 如何确定假设检验的方法
什么是假设检验:假设检验(hypothesis
testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作h0;选取合适的统计量,这个统计量的选取要使得在假设h0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显着性水平进行检验,作出拒绝或接受假设h0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、f—检验法,秩和检验等。
假设检验的基本步骤如下:
1、提出检验假设又称无效假设,符号是h0;备择假设的符号是h1。
h0:样本与总体或样本与样本间的差异是由抽样误差引起的;
h1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如x2值、t值等。根据资料的类型和特点,可分别选用z检验,t检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性p的大小并判断结果。若p>α,结论为按α所取水准不显着,不拒绝h0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果p≤α,结论为按所取α水准显着,拒绝h0,接受h1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。p值的大小一般可通过查阅相应的界值表得到。
教学中的做法:
1.根据实际情况提出原假设和备择假设;
2.根据假设的特征,选择合适的检验统计量;
3.根据样本观察值,计算检验统计量的观察值(obs);
4.选择许容显着性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit);
5.根据检验统计量观察值的位置决定原假设取舍。