❶ 行程问题的技巧和解题过程
行程问题公式
基本概念
行程问题是研究物体运动的。
基本公式
路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题
确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇时间×速度和=相遇路程
相遇问题(直线)
甲的路程+乙的路程=总路程
相遇问题(环形)
甲的路程 +乙的路程=环形周长
追及问题
追及时间=路程差÷速度差
速度差=路程差÷追及时间
追及时间×速度差=路程差
追及问题(直线)
距离差=追者路程-被追者路程=速度差X追及时间
追及问题(环形)
快的路程-慢的路程=曲线的周长
流水问题
顺水行程=(船速+水速)×顺水时间
逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速
逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2
水速:(顺水速度-逆水速度)÷2
船速:(顺水速度+逆水速度)÷2
解题关键
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:
顺水速度=船速+水速,(1)
逆水速度=船速-水速.(2)
这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:
水速=顺水速度-船速,
船速=顺水速度-水速。
由公式(2)可以得到:
水速=船速-逆水速度,
船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:
船速=(顺水速度+逆水速度)÷2,
水速=(顺水速度-逆水速度)÷2。
1)一般公式: 静水速度(船速)+水流速度(水速)=顺水速度; 船速-水速=逆水速度; (顺水速度+逆水速度)÷2=船速; (顺水速度-逆水速度)÷2=水速。 (2)两船相向航行的公式: 甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度 (3)两船同向航行的公式: 后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
❷ 行程问题、相遇问题和追及问题的解题技巧是什么
(一)相遇问题
两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。它的特点是两个运动物体共同走完整个路程。
相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。
总路程=(甲速+乙速)×相遇时间
相遇时间=总路程÷(甲速+乙速)
另一个速度=甲乙速度和-已知的一个速度
(二)追及问题
追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。由于速度不同,就发生快的追及慢的问题。
解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。
(三)相离问题
两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:
两地距离=速度和×相离时间
相离时间=两地距离÷速度和
速度和=两地距离÷相离时间
流水问题的数量关系仍然是速度、时间与距离之间的关系。即:速度×时间=距离;距离÷速度=时间;距离÷时间=速度。但是,河水是流动的,这就有顺流、逆流的区别。在计算时,要把各种速度之间的关系弄清楚是非常必要的。
(2)行程问题数学解题方法与技巧扩展阅读:
行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动。涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。
但归纳起来,不管是“一个物体的运动”还是“多个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。
❸ 行程问题一般有什么解题思路
行程应用题
行程问题是研究物体在一定的条件、环境、范围内运动的问题,这类问题主要涉及到路程、速度、时间三个量之间的关系。较复杂的行程问题还要注意理解“速度和”、“速度差”以及行程中两车的出发时间、出发地点、运动方向与运动结果等四大要素,行程问题根据运动方向的不同可分为三类:
一、 相遇问题
两个物体由于相向运动而相遇,这就是相遇问题。解答相遇问题的关键是求出两个运动物体的速度之和,其基本公式有:
相遇时间=两地路程÷速度和
速度和=两地路程÷相遇时间
两地路程=速度和×相遇时间
二、 相离问题
两个运动物体由于背向运动而相离,就是相离问题。解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:
两地距离=速度和×相离时间
相离时间=两地距离÷速度和
速度和=两地距离÷相离时间
三、 追及问题
两个运动的物体同向而行,一快一慢,快车后,慢车前,经过一定的时间,快的追上慢的就是追及问题。根据所给的条件不同,可分两种:(1)直接给追及距离的(同时不同地的);(2)间接给追及距离的(同地不同时)。
解答追及问题的关键是确定或求出追及距离和速度差,基本公式有:
追及时间=追及距离÷速度差
追及距离=速度差×追及时间
速度差=追及距离÷追及时间
推荐于 2020-03-10
查看全部7个回答
3-6年级写作文没思路?马鞍山专属作文提升课,在家免费学
00:56
高途免费课
广告
1条评论
yijia1234560赞
相遇时间是什么
— 你看完啦,以下内容更有趣 —
公务员考试行测题库报名时间_报考条件“中公教育”
“中公教育”公务员考试行测题库职位解读,报名指导,在职备考,零基础备考,封闭实战!“中公教育”公务员考试行测题库,题库资料领取,笔面全程,全程服务
广告2020-08-08
行程问题如何解决
行程问题是反映物体匀速运动的应用题。行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动。涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。但归纳起来,不管是“一个物体的运动”还是“两个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。 编辑本段公式流水问题顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速 静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 相遇问题(直线)相向而行的公式:相遇时间=距离÷速度和(甲的速度×时间+乙的速度×时间=距离) 相背而行的公式:相背距离=速度和×时间(甲的速度×时间+乙的速度×时间=相背距离) 相遇问题(环形)甲的路程+乙的路程=环形周长 多次相遇 线型路程:甲乙共行全程数=相遇次数×2-1 环型路程:甲乙共行全程数=相遇次数 其中甲共行路程=单在单个全程所行路程×共行全程数 追及问题同向而行的公式:(速度慢的在前,快的在后)追及时间=追及距离÷速度差 若在环形跑道上:(速度快的在前,慢的在后)追及距离=速度差×时间 追及距离÷时间=速度差 甲的路程+ 乙的路程=总路程 追及时间=路程差÷速度差 速度差=路程差÷追及时间 追及时间×速度差=路程差 追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间 追及问题(环形)快的路程-慢的路程=曲线的周长 编辑本段详述要正确的解答有关"行程问题”的应用题,必须弄清物体运动的具体情况。如运动的方向(相向,相背,同向),出发的时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错而过、追击)。 两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体“相向运动”或“相背运动”时,此时的运动速度都是“两个物体运动速度的和”(简称速度和),当两个物体“同向运动”时,此时两个物体的追击的速度就变为了“两个物体运动速度的差”(简称速度差)。 当物体运动有外作用力时,速度也会发生变化。如人在赛跑时顺风跑和逆风跑;船在河中顺水而下和逆水而上。此时人在顺风跑是运动的速度就应该等于人本身运动的速度加上风的速度,人在逆风跑时运动的速度就应该等于人本身的速度减去风的速度;我们再比较一下人顺风的速度和逆风的速度会发现,顺风速度与逆风速度之间相差着两个风的速度;同样比较“顺水而下”与“逆流而上”,两个速度之间也相差着两个“水流的速度”。 编辑本段解法设甲的速度为X千米/时,乙的速度为Y千米/时,甲从A地出发,乙从B地出发,当两人第一次相遇时,离A地4千米,也就是甲走了(4/X)小时,而此时距乙离开B地的距离为 〔Y×(4/X)〕千米,于是我们可以知道,整条路线的全程为S=4+〔Y×(4/X)〕,那么也可以清楚这道题目求的就是第一次相遇时离B地的这个距离,用这个距离与第二次两相遇时而到第二次相遇时离B地的3千米进行比较。因此,为了方便以后的说明,将这个距离[Y×(4/X)〕用J来表示。 第一次相遇后,甲需要走过的距离为3+〔Y×(4/X)〕,这样才能与乙第二次相遇,而在甲用同样的时间,乙则要走过距离为4+S-3的路程才能与甲相遇。于是两人的相同时间可以写成一个等式,如下: {3+〔Y×(4/X)〕}/X=(4+S-3)/Y (其中,S为全程距离,上面已经给出过了,这里为了写起来方便就不全写进去了,但做题目时最好还是全写进去,不然会看不明白的。) 整理上面这个式子,可得, 4Y^2-XY-5X^2=0 将这个式子因式分解为 (Y+X)(4Y-5X)=0 可得X与Y之间的关系式,Y=-X或 Y=5X/4 因为两人的速度不可能为负数,所以第一个关系式否掉,那么就是第二个关系式可用。 于是将这个关系式带入J这个距离式子中,可以得出J=(5X/4 )×4/X=5 于是,我们知道了,当甲与乙第一次相遇时,离B地的距离为5千米,而第二次相遇时,离B地的距离为3千米,所以两次相遇地点间的距离为2千米
61赞·1,813浏览
行程问题不好怎么办?
请问是计算程问题的题目,还是实际的旅行行程问题,前者,请给出具体问题,后者请从以下几方面考虑 第一时间是否紧张,旅程的远近,时间紧,考虑飞机,高铁。 第二旅费是否充足,如祣费没问题,还是选飞机,高铁,舒适度较高,反之,则可选普通火车。价格是便宜好多。 第三住宿如果已有当地人接待,则可不考虑,否则请提前预订,并且选好地点,要交通方便的。
66浏览2019-11-26
行程问题怎么做?
相向而行的公式:相遇时间=距离÷速度和(甲的速度×时间+乙的速度×时间=距离)。 相背而行的公式:相背距离=速度和×时间。(甲的速度×时间+乙的速度×时间=相背距离) 相向而行的公式:(速度慢的在前,快的在后)追击时间=追击距离÷速度差。 若在环形跑道上,(速度快的在前,慢的在后)追击距离=速度差×时间。 追击距离÷时间=速度差
169赞·1,431浏览2018-12-22
怎么解行程问题
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间 关键问题:确定行程过程中的位置 相遇问题:速度和×相遇时间=相遇路程(请写出其他公式) 相遇问题:(直线):甲的路程+乙的路程=总路程 相遇问题:(环形):甲的路程 +乙的路程=环形周长 追及问题:追击时间=路程差÷速度差(写出其他公式) 追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间 追及问题:(环形):快的路程-慢的路程=曲线的周长 流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间 顺水速度:船速+水速 逆水速度=船速-水速 静水速度:(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 流水问题:关键是确定物体所运动的速度,参照以上公式。 列车过桥问题:关键是确定物体所运动的路程,参照以上公式。 流水问题:流水速度+流水速度÷2 水 速:流水速度-流水速度÷2
2赞·716浏览
解决行程问题和分配问题的方法
问题分析中的第一步其实和问题的定义是完全连贯的,即细化问题的定义。在问题定义阶段我们仅仅给出现状和期望的差距即可,但是究竟是哪里的问题?问题的症状表现究竟分为了哪些方面?这些内容就属于问题定义的细化,由于在整个细化过程中就会设计到调查研究,我们需要调查研究,并根据收集回来的数据分析后才能够得出结论,这个过程其实就已经是问题分析的过程。 如果你不知道你要去哪里?那么你可以选择任何一条路。分析问题的过程就是需要知道具体的目标,同时通过问题细化后给出结构化的问题定义。才能够达到互斥和综合无遗漏的定义目标。问题由几部分组成,一个是问题所作用的对象,一个是问题表象本身。这两者都存在问题分解和细化的过程,通过分解后才能够形成更加细小和容易解决的组件。比如讲我现在很难受,这个问题的作用对象是我,而我这个对象是可以分解的,即是生理上的难受还是心理上的难受,如果是身体上的是外伤还是内部的?内部的可能又涉及到具体哪个部位难受,这就是问题作用的对象的分解。另外问题本身的表象难受也可以进行分解,是焦虑,痛苦还是悲伤,如果是痛苦的是隐痛,阵痛还是酸痛?通过这两方面的分解后就基本清楚了如何对症下药,如何根据经验进行模式匹配。 当我们遇到问题的时候,我们一般会采用鱼骨图进行问题根源分析,但同时对问题本身的分解和分析也同样重要。在这里可以采用思维导图或逻辑树的方法对问题本身进行分解,分解后你才会发现问题的产生是由各种问题要素相互作用后才产生的,问题的表象是由各种小问题的表象共同聚合而成的。有了这个思路就有了动态系统观的思想,知道了问题本身远远比黑白是非要复杂的多,知道了解决问题不能片面的针对表像而忽视了整体。一个问题我们只要能够解决关键的问题要素就能够达到大家都认同的一个满意的结果,而这种分析后我们就容易采用2/8原则确定问题的关键要素,并有针对性的去设计数据收集,分析和调查方案和行动。 对于问题的分解我们期望引入系统思考的思路,即问题不是简单的进行逻辑分解就算完成,而是在问题分解为子问题和问题要素后必须要去考虑问题之间的交互作用。各问题要素之间存在着正负作用,而且作用力大小也不一样,如果去片名追求一个指标的最优而不去考虑对其他要素的影响,那最终结果往往是问题没有解决反而表现的更严重。 问题树的方法主要用在结构化问题分析上,因为有了问题树就清楚了整个问题的构成,就可以对问题展开全面的调查研究和分析。这无疑也增加了我们收集和分析数据的工作量,但由于做了全面分析可以保证不放过任何一个问题症结。而非结构化的方法往往并不需要很细致的进行问题分解,当问题产生后非结构化分析的方法首先是根据个人的经验先假设可能产生问题的分支和要素,再收集数据和通过分析去论证自我假设的正确性,这种方法在我们有较多的经验积累的时候往往更加有效。
2赞·861浏览
【携程APP】广西旅游攻略 介绍_立即下载
值得一看的广西相关信息推荐
携程APP 广西旅游攻略,有哪些好玩的景点,在线攻略,立即下载!
m.ctrip.com广告
【携程APP】广西旅游攻略 介绍_立即下载
携程APP 广西旅游攻略,有哪些好玩的景点,在线攻略,立即下载!
m.ctrip.com广告
中国很多中年夫妻,喜欢分床睡,这样做到底好不好?
实际上现在越来越多的中年夫妻喜欢分床睡,但是这也不一定预示着婚姻出现了多大的问题。因为人到中年,可能
8条回答·695人在看
生意不好,是转让还是放弃?
这也是我建议孙老板放弃的原因。一旦人们下意识地不喜欢某事,他们只会变得越来越厌恶。他们
5条回答·122人在看
酿酒工艺:红米酒家庭的酿造方法是什么
红米酒怎么做的?红米酒家庭的酿造方法是什么?喝红米酒有什么好处? 一、自酿红米酒的方法: 1、糯米淘洗后放清水里浸泡12小时。浸泡好的糯米再次淘洗至洗米水变清澈。 2、把淘好的米放蒸格里蒸30-
729人在看
千峰竞秀、万壑奔流,作为道教名山的三清山,都有哪些令人流连忘返的特点呢?
三清山可以说是非常的着名,因为这里有着优美的风景,而且道教文化厚重,可以说是道教教徒的圣地,而且这里
10条回答·340人在看
评论
❹ 行程问题的解题技巧和方法
行程问题的解题技巧
一般来说,在这三个量当中,由于往往涉及不同东西或者个体,因此速度大多时候是个变量,所以不变量基本上隐藏在路程和时间这两个量里面。
行程问题的解题方法
首先,我们来看行程问题的核心公式S=VT。
这种等号一边是一个量,另一边是两个量乘积的公式,可以称之为正反比关系的存在这种公式有一个潜在的规律就是,不管题目怎么设置,路程、速度、时间这三个量总有一个是确定不变的,而另外两个量都是变的,只要找到行测公式当中的不变量,正反比的等量关系就找出来了。
所以关键是找这个不变的量。
❺ 初一数学行程问题解题技巧
初一数学行程问题解题技巧如下:
商品的利润是商品的售价与进价之差,也就是:商品利润=商品售价-商品进价;商品的利润率=商品利润÷商品进价。
2、某商品的原售价是50元,因销售不畅打九折销售,后又因商品紧销提价若干,每件售价为54元,问提价的百分率是多少?
解析:设提价的百分率为x,本题的等量关系可表示为:原售价x90%x(1+x)=现售价。
解设:提价的百分率为x,根据题意得:50x90%x(1+x)=54。
解这个方程得:x=0.2即:x=20%。
答:提价的百分率是20%。
❻ 2022省考行测备考:行程问题的解题方法和技巧
2022地方公务员考试(省考)行测数量关系题,行程问题的答题技巧,如:
正反比
①正反比关系
在轮渗M=A×B形式中,当M一定时,A与B成反比;当A或者B一定时,另外两个量成正比。
②正反比在行程问题中的具体运用
时间一定:路程比等于速度比的正比例;
速度一定:路程比等于时间比的正比例;
路程一定:速度比等于时间比的反比例。
图解法,如:
①循文画图
行船问题,水流方向对于分析题意有重要影响。选择竖直方向作图比水平方向作图更能形象地体现运动过程。由甲船从A地(上游),乙船从B地(下游)出发,确定两个对象与起点。
②线有虚实
用实线与虚线的差别来体现不同对象的运动轨迹,更直观。如果将在AB两地之间的往返运动分别在不同的空间来标示出来,既避免仿桐慎了重复,又利于备敬厘清不同对象运动路线。如,实线表示甲船,虚线表示乙船甲、乙两船在A、B两地间直线往返,将每次往返单独呈现。
❼ 行测之行程问题解题技巧。
公式法,速度和×相遇时间=相遇路程。
相遇问题的核心是“速度和”问题
甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:
A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间。
二次相遇问题
甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有:
第二次相遇时走的路程是第一次相遇时走的路程的两倍。
行程问题涉及的变化较多:
有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动。涉及两个物体运动的,又有“相向运动”(相遇问题)、“同向运动”(追及问题)和“相背运动”(相离问题)三种情况。但归纳起来,不管是“一个物体的运动”还是“多个物体的运动”,不管是“相向运动”、“同向运动”,还是“相背运动”,他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程。
❽ 初一行程问题解题技巧
初一行程问题解题技巧如下:
1、相遇问题
相遇路程等于速度和与相遇时间的乘积伏岁,相遇时间等于相遇路程与速度和的商值,速度和等于相遇路程与相遇时间的商值。
相遇路程=速度和做谨×相遇时间;
相遇时间=相遇路程÷速度和;
顺流速度=静水速度+水流速度;
逆流速度=静水速度-水流速度;
静水速度=(顺流速度+逆流速度)÷2;
水流速度=(顺流速度-逆流速度)÷2。
3、行程问题要决
要诀一:大部分题目有规律可依,要诀是“学透”基本公式;
要诀二缺胡睁:无规律的题目有“攻略”,一画(画图法)二抓(比例法、方程法)。
❾ 行程问题如何巧算
相遇问题
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。相遇问题是研究速度,时间和路程三者数量之间关系的问题。它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,简雹樱也就是速度和。
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
相遇路程=甲走的路程+乙走的路程
甲的速度=相遇路程÷相遇时间 -乙的速度
甲的拦丛路程=相遇路程-乙走的路程
解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法.。相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。驶的方向,是相向,同向还是背向.不同的方向解题方法就不一样。是否相遇.有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上,得到同时行驶的路程.。
追及问题
两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。这类常常会在考试考到。一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;一种是多人追及、多人相遇,此类则较困难。
追及距离=速度肆团差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
❿ 行程问题六年级数学解题技巧
我这里列出几种常见的形成问题解答技巧
相遇问题
追及问题 : |距离差=速度差×追及时间 追及时间=距离差÷速度差 速度差=距离差÷追及时间 速度差=快速-慢速
相离问题 : 两地距离=速度和×相离时瞎明间 相离时间=两地距离÷速度和 速度和=两地距离-相离时间
火车过桥问题
火车过桥是指全车过桥,即从车头上桥到车尾离开,才算全部过桥。
基本数量关系 : 过桥的路程=桥长+车丛余长 车速=(桥长+车长)÷过桥时间 过桥时间=(桥长+车长)÷车速 桥长=车速×过桥时间-车长 车长=车速×过桥时间-桥长
火车追及问题
从车头追上到车磨郑告尾离开的时间=(A的车身长度+B的车身长度)÷(A的车 速-B的车速)
两车从车头相遇到车尾离开的时间=(A的车身长度+B的车身长度) ÷(A 的车速+B的车速)
电梯行程问题
顺行速度=正常行走速度+电梯速度 逆行速度=正常行走速度-电梯速度
猎狗追兔问题
1将两种动物速度单位统一,路程差÷速度=追及时间 2将两种动物速度单位统一,由于追及时间相同,速度比=路程比