① 数学做题的方法及技巧
数学做题的方法及技巧
数学做题的方法及技巧,数学一直都是令许多学生头疼的科目,在考试中我们只能尽量做到不会做的题目也能得分,甚至蒙出正确的答案,只要掌握一定的数学答题技巧,也是有可能实现的,接下来一起看看数学做题的方法及技巧。
一、熟悉习题中所涉及的内容,包括定义、公式、定理和规则。
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。
二、熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。
有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。
这时,我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。
三、熟悉基本的解题步骤和解题方法。
解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。
选择题蒙法
1、选择题出现数值的选项中,含最多相同数值的选项为正确答案。如四个选项:A、3 B、3/11 C、3/13 D、2/11。“3”和“11”出现的次数最多,故选选项B。
2、选择题出现数值的选项中,数值最大的和数值最小的一般不是正确选项,答案从中间数值的两个选项中选。
3、选择题出现正负数值的选项中,答案必定是那两个选项的其中之一。
4、选择题中,若出现概念题。如果有课外的或是课内很少见的说法,一般都是正确的说法。
5、选择题,不会连续出现3个相同的答案。一般而言,选项A出现的概率最低。而且,第一题和最后一题一般不为选项A,最后两道题多为选项B和选项C。
填空题蒙法
1、如果出现求长度或者求角度的选择题,并且试卷上有图像的。可以直接用刻度尺或者量角器去衡量。
2、有关线性规划的选择题,不用画图,直接计算。用时更短,准确率更高!
3、遇上求数值、实在不会做的选择题。如果明显是整数答案的,可以选写“0、1、-1”中的其中一个数值;如果明显是分数答案的.,可以选写“1/2、1/3、2/3”中的其中一个数值;如果明显是含根号值数答案的,可以选写“根号2、根号3“等简单的数值。
4、一般来说,题目复杂难懂的,答案的数值往往是很简单的。反之就是比较复杂的。
解答题蒙法
1,证明题中,如果有某一个结论实在不知道怎么推导出来,可以把题目中所有的条件抄一遍,然后直接写出你想要的结论即可(情况好的话一分不扣!情况不好的话,也就扣一些步骤分)
2,证明题中,第二第三题可以直接引用第一题的结论(即使第一题是要你证明的结论,你没有证明出来也可以用!)
3、一般而言,压轴题的第三小问,都要用第一小题中的结论。(所以,压轴题的第三小问,即使做不出来,也要把第一小题中的结论写上去,可以得一到两分的步骤分!)
4、空间几何证明题中,即使不会证明,也要建立空间直角坐标系,并写上你建系时的套话。
5、实在一点儿都不会做的题目,把所有你觉得用得上的、跟本题有关的公式定理都写上去。并且,每一小题都要重复写上(意思就是:第一小题写了,第二、第三小题也要写!)
数学答题技巧
1.适用条件
[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个)
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b。周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4.函数奇偶性
(1)对于属于R上的奇函数有f(0)=0;
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5.数列爆强定律
(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);
(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立
(4)等比数列爆强公式:S(n+m)=S(m)+qmS(n)可以迅速求q
6.数列的终极利器,特征根方程
首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),
a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p(n-1)+x,这是一阶特征根方程的运用。
二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)
② 答题技巧的方法有哪些
期末考试临近,很多同学都感觉到了空前的学习压力。然而,最终考试成绩的取得一方面是对基础知识的掌握,另一方面就是考试中的技巧了。有的同学,平时学习成绩好,但在考试中往往出现发挥不佳的情况;另外,相当一部分同学总感觉考试时间不够用,也是缺乏应试技巧的表现。
01▶
自我暗示 消除焦虑
考试一旦怯场,面对试题就会头脑空空,平时熟悉的公式、定理回忆起来也变得困难,注意力不能集中,等到心情平静下来,已浪费了许多时间,看到许多未作的题目,则会再次紧张,形成恶性循环。这时要迅速进行心理调节,使自己快速进入正常应考状态,可采用以下两种方法调节焦虑情绪:
①自我暗示法。用平时自己考试中曾有优异成绩来不断暗示自己:我是考生中的佼佼者;我一定能考得理想的成绩;我虽然有困难的题目,但别人不会做的题目也很多。
②决战决胜法。视考场为考试的大敌,用过去因怯场而失败的教训鞭策自己决战决胜。
02▶
整体浏览 了解卷情
拿到试卷后,在规定的地方写好姓名和准考证号后,先对试卷进行整体感知,看看这份试卷共多少页、总题量是多少、分哪几大部分、有哪几种题型。这样不仅可以要防止试卷错误,尽早调换,避免不必要的损失;而且通过对全卷作的整体把握,能尽早定下作战方案。重要的是初步了解下试卷的难易度,以便自己合理安排答题时间,避免会做的没有做,不会做的却浪费了时间的情况出现。
03▶
两先两后 合理安排
试卷的难易、生熟占分高低大体心中有数了,情绪也稳定了,此时大脑里的思维状态由启动阶段进入亢奋阶段。只要听到铃声一响就可开始答题了。解题应注意“两先两后”的安排:
①先易后难。一般来说,一份成功的试卷,它上面的题目的排列应是由易到难的,但这是命题者的主观愿望,具体情况却因人而异。同样一个题目,对他人来说是难的,对自己来说也许是容易的,所以当被一个题目卡住时就产生这样的念头,“这个题目做不出,下面的题目更别提了。”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。
②先熟后生。通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者——熟悉的内容可以采取先答的方式。万一哪个题目偏难,也不要惊慌失措,而要冷静思考,变生为熟,想一想能不能把所谓的生题化解为若干个熟悉的小问题,或转化为熟悉的题型。总之要记住一句名言:“我易人易,我不大意;我难人难,我不畏难”。
04▶
一慢一快 慢中求快
一慢一快,指的是审题要慢要细,做题要快。题目本身是解题方法、技巧的信息源,特别是每卷必有的选择题中的题干中有许多解答该题的规定性。例如:选出完全正确的一项还是错误的一项,选一项还是两项等,这些一定要在读题时耐心地把它们读透,弄清要求,否则是在做无用功。考卷大多是容易的,在大家容易的情况下就看谁更细心,而细心最主要的就是审题时要慢要细心。
当找到解决问题的思路和方法后,答题时速度应快。做到这一点可从两方面入手,一、书写速度应快,不慢慢吞吞。二、书写的内容要简明扼要,不拖泥带水,噜嗦重复,尽量写出得分点就行了。
05▶
分段得分,每分必争
考试中经常有的同学答案是错误的,但依然得了分,这说明写出了得分点,而有的同学甚至一点解题思路都没有,只是将公式进行了罗列,也依然得到了分,都是同样的道理。尤其是有问的解答中,如果第一个不会千万不要放弃,一定要浏览完全部的问题,做到每分必争,切忌出现大量空题的情况。
对于会做的题目。对会做的题目要解决对而不全的老大难问题,如果出现跳步往往就会造成丢分的情况,因此,答题过程一定规范,重要步骤不可遗漏,这就是分段得分。
对于不会做的题目,这里又分两种情况,一种是一大题分几小题的,一种是一大题只有一问的。对于前者,我们的策略是“跳步解答”,第一小题答不出来,就把第一小题作为已知条件,用来解答第二小题,只要答得对,第二小题照样得分。对于后者,我们的策略是“缺步解题”,能演算到什么程度就什么程度,不强求结论。这样可以最大程度地得到分数。
06▶
重视检查环节
答题过程中,尽量立足于一次成功,不出差错。但百密不免一疏,如果自己的考试时间还有些充裕,那么根不可匆忙交卷,而应作耐心的复查。将模棱两可的及未做的题目最后要进行检查、作答,特别是填空题、选择题不要留空白。
③ 初中数学解题技巧
初中数学解题技巧
数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。下面我就给大家讲讲初中数学解题技巧。欢迎大家参考。
第一部分 初中数学考试答题技巧
一、答题原则
大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。如果发现问题,要及时报告监考老师处理。
答题时,一般遵循如下原则:
1.从前向后,先易后难。通常试题的难易分布是按每一类题型从前向后,由易到难。因此,解题顺序也宜按试卷题号从小到大,从前至后依次解答。当然,有时但也不能机械地按部就班。中间有难题出现时,可先跳过去,到最后攻它或放弃它。先把容易得到的分数拿到手,不要“一条胡同走到黑”,总的原则是先易后难,先选择、填空题,后解答题。
2.规范答题,分分计较。数学分I、II卷,第I卷客观性试题,用计算机阅读,一要严格按规定涂卡,二要认真选择答案。第II卷为主观性试题,一般情况下,除填空题外,大多解答题一题设若干小题,通常独立给分。解答时要分步骤(层次)解答,争取步步得分。解题中遇到困难时,能做几步做几步,一分一分地争取,也可以跳过某一小题直接做下一小题。
3.得分优先、随机应变。在答题时掌握的基本原则是“熟题细做,生题慢做”,保证能得分的地方绝不丢分,不易得分的地方争取得分,但是要防止被难题耗时过多而影响总分。
4.填充实地,不留空白。考试阅卷是连续性的流水作业,如果你在试卷上留下的空白太多,会给阅卷老师留下不好印象,会认为你确实不行。另外每道题都有若干采分点,触到采分点便可给分,未能触到采分点也没有倒扣分的规定。因此只要时间允许,应尽量把试题提问下面的空白处写上相应的公式或定理等有关结论。
5.观点正确,理性答卷。不能因为答题过于求新,结果造成观点错误,逻辑不严密;或在试卷上即兴发挥,涂写与试卷内容无关的字画,可能会给自己带来意想不到的损失。胡乱涂写可以认为是在试卷上做记号,而判作弊。因此,要理性答卷。
6.字迹清晰,合理规划。这对任何一科考试都很重要,尤其是对“精确度”较高的数理化,若字迹不清无法辨认极易造成阅卷老师的误判,如填空题填写带圈的序号、数字等,如不清晰就可能使本来正确的失了分。 另外,卷面答题书写的位置和大小要计划好,尽量让卷面安排做到 “前紧后松”而不是“前松后紧”。特别注意只能在规定位置答题,转页答题不予计分。
二、审题要点
审题包括浏览全卷和细读试题两个方面。
一是开考前浏览。开考前5分钟开始发卷,大家利用发卷至开始答题这段有限的时间,通过答前浏览对全卷有大致的了解,初步估算试卷难度和时间分配,据此统筹安排答题顺序,做到心中有数。此时考生要做到“宠辱不惊”,也就是说,看到一道似曾相识的题时,心中不要窃喜,而要提醒自己,“这道题做时不可轻敌,小心有什么陷阱,或者做的题目只是相似,稍微的不易觉察的改动都会引起答案的不同”。碰到一道从未见过,猛然没思路的题时,更不要受到干扰,相反,此时应开心,“我没做过,别人也没有。这是我的机会。”时刻提醒自己:我易人易,我不大意;我难人难,我不畏难。
二是答题过程中的仔细审题。这是关键步骤,要求不漏题,看准题,弄清题意,了解题目所给条件和要求回答的问题。不同的题型,考察不同的能力,具有不同的解题方法和策略,评分方式也不同,对不同的题型,审题时侧重点有所不同。
1.选择题是所占比例较大(40%)的客观性试题,考察的内容具体,知识点多,“双基”与能力并重。对选择题的审题,要搞清楚是选择正确陈述还是选择错误陈述,采用特殊什么方法求解等。
2.填空题属于客观性试题。一般是中档题,但是由于没有中间解题过程,也就没有过程分,稍微出现点错误就和一点不会做结果相同,“后果严重”。审题时注意题目考查的知识点、方法和此类问题的易错点等。
3.解答题在试卷中所占分数较多(74分),不仅需要解出结果还要列出解题过程。解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含信息,联想相关题型的通性通法,寻找和确定具体的解题方法和步骤,问题才能解决。
三、时间分配
近几年,随着高考数学试题中的应用问题越来越多,阅读量逐渐增加,科学地使用时间,是临场发挥的一项重要内容。分配答题时间的基本原则就是保证在能得分的地方绝不丢分,不易得分的地方争取得分。在心目中应有“分数时间比”的概念,花10分钟去做一道分值为12分的中档大题无疑比用10分钟去攻克1道分值为4分的中档填空题更有价值。有效地利用最好的答题时间段,通常各时间段内的答题效率是不同的,一般情况下,最后10分钟左右多数考生心理上会发生变化,影响正常答卷。特别是那些还没有答完试卷的考生会分心、产生急躁心理,这个时间段效率要低于其它时间段。
在试卷发下来后,通过浏览全卷,大致了解试题的类型、数量、分值和难度,熟悉“题情”,进而初步确定各题目相应的作答时间。通常一般水平的考生,解答选择题(12个)不能超过40分钟,填空题(4个)不能超过15分钟,留下的时间给解答题(6个)和验算。当然这个时间安排还要因人而异。
在解答过程中,要注意原来的时间安排,譬如,1道题目计划用3分钟,但3分钟过后一点眉目也没有,则可以暂时跳过这道题;但若已接近成功,延长一点时间也是必要的。需要说明的是,分配时间应服从于考试成功的目的,灵活掌握时间而不墨守最初安排。时间安排只是大致的整体调度,没有必要把时间精确到每1小题或是每1分钟。更不要因为时间安排过紧,造成太大的心理压力,而影响正常答卷。
一般地,在时间安排上有必要留出5—10分钟的检查时间,但若题量很大,对自己作答的准确性又较为放心的话,检查的时间可以缩短或去除。但是需要注意的是,通常数学试卷的设计只有少数优秀考生才可能在规定时间内答完。
四、大题和难题
一张考卷必不可少地要有大题、难题以区分考生的知识和能力水平,以便拉开档次。一般大题、难题分值都较高,遇到难题,要尽量放到最后去攻克;如果别的题目全部做完而且检查无误,而又有一定时间的话,就应想办法攻克难题。不是每个人都能得150的,先把会的做完,也可以给自己奠定心里优势。
五、各种题型的解答技巧
1.选择题的答题技巧
(1)掌握选择题应试的基本方法:要抓住选择题的特点,充分地利用选择支提供的信息,决不能把所有的选择题都当作解答题来做。首先,看清试题的指导语,确认题型和要求。二是审查分析题干,确定选择的范围与对象,要注意分析题干的内涵与外延规定。三是辨析选项,排误选正。四是要正确标记和仔细核查。
(2)特值法。在选择支中分别取特殊值进行验证或排除,对于方程或不等式求解、确定参数的取值范围等问题格外有效。
(3)反例法。把选择题各选择项中错误的答案排除,余下的便是正确答案。
(4)猜测法。因为数学选择题没有选错倒扣分的规定,实在解不出来,猜测可以为你创造更多的'得分机会。除须计算的题目外,一般不猜A。
2.填空题答题技巧
(1)要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。
(2)一般第4个填空题可能题意或题型较新,因而难度较大,可以酌情往后放。
3.解答题答题技巧
(1)仔细审题。注意题目中的关键词,准确理解考题要求。
(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。
(3)给出结论。注意分类讨论的问题,最后要归纳结论。
(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。
六、如何检查
在考试中,主动安排时间检查答卷是保证考试成功的一个重要环节,它是防漏补遗、去伪存真的过程,尤其是考生如果采用灵活的答题顺序,更应该与最后检查结合起来。因为在你跳跃式往返答题过程中很可能遗漏题目,通过检查可弥补这种答题策略的漏洞。
检查过程的第一步是看有无遗漏或没有做的题目,发现之后,应迅速完成或再次思考解法。对各类题型的做答过程和结果,如果有时间要结合草稿纸的解题过程全面复查一遍,时间不够,则重点检查。
选择题的检查主要是查看有无遗漏,并复查你心存疑虑的题目。但是若没有充分的理由,一般不要改变你依据第一感觉作出的判断。
对解答题的检查,要注意结合审查草稿纸的演算过程,改正计算和推理中的错误。另外要补充遗漏的理由和步骤,删去或修改错误或不准确的观点。
计算题和证明题是检查的重点,要仔细检查是否完成了题目的全部要求;若时间仓促,来不及验算的话,有一些简单的验证方法:一是查单位是否有误;二是看计算公式引用有无错误;三是看结果是否比较“像”,这里所说的“像”是依靠经验判断,如应用题的答案是否符合实际意义;数字结论是否为整数、自然数或有规则的表达式,若结论为小数或无规则的数,则要重新演算,最好能用其他方法再试着去做
七、强调的一点是草稿纸,这是考试时和试卷同等重要的东西。
同学们拿到草稿纸后,请先将它三折。然后按顺序使用。草稿纸上每道题之间留空,标清题号。字迹要做到能够准确辨认,切不可胡写乱画。这样做的好处是:
1. 草稿纸展现的是你的答题思路。草稿纸清晰,答题思路也会清晰,最起码你清楚你已经做到了哪一步。如果草稿混乱的话,这一步推出来了,往往又忘了上一步是怎么得到的。
2. 对于前面提到的暂时不会,回头再做的题,由于你第一次做本题时已经进行了一定的思维过程。第二次做时如果重头再思考非常浪费时间。利用草稿纸,可以迅速找到上次的思维断点。从而继续攻破。关键结论要特殊标记。
3. 检查过程中,草稿纸更是最好的帮手。如果连演算过程都可从草稿纸上清晰找到的话,无疑会节省大量时间。
第二部分 提高解题速度的八步骤
在考试时,我们常常感到时间很紧,试卷还没来得及做完,就到收卷时间了,虽然有些试题,只要再努一把力,我们是有可能做出来的。这其中的原因之一,就是解题速度太慢。
几乎每个学生都知道,要想取得好成绩,必须努力学习,只有加强练习,多做习题,才能熟能生巧。可是有些学生天天趴在那里做题,但解出的题量却不多,花了大量的时间,却没有解出大量的习题,难道不应找一找原因吗?何况,我们并不比别人的时间更多。试想,如果你的解题速度提高10倍,那会是怎样一种情景?解题速度提高10倍?可能吗?答案是肯定的,完全可能。关键在于你想与不想了。
那么,究竟怎样才能提高解题速度呢?
首先,应十分熟悉习题中所涉及的内容,做到概念清晰,对定义、公式、定理和规则非常熟悉。你应该知道,解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。我指导学生按此方法学习,几乎所有的学生都大大提高了解题的速度,其效果非常之好。
第二,还要熟悉习题中所涉及到的以前学过的知识和与其他学科相关的知识。例如,有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是数学题中要用到的一个物理概念,而我们对此已不是十分清晰了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。这时我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。
第三,对基本的解题步骤和解题方法也要熟悉。解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。
第四,要学会归纳总结。在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。
第五,应先易后难,逐步增加习题的难度。人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。一个人的能力也是通过锻炼逐步增长起来的。若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。
其实,解简单容易的习题,并不一定比解一道复杂难题的劳动强度和效率低。比如,与一个人扛一大袋大米上五层楼相比,一个人拎一个小提包也上到五层楼当然要轻松得多。但是,如果扛米的人只上一次,而拎包的人要来回上下50次、甚至100次,那么,拎包人比扛米人的劳动强度大。所以在相同时间内,解50道、100道简单题,可能要比解一道难题的劳动强度大。再如,若这袋大米的重量为100千克,由于太重,超出了扛米人的能力,以至于扛米人费了九牛二虎之力,却没能扛到五楼,虽然劳动强度很大,却是劳而无功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五楼,劳动强度也许并不很大,而效率之高却是不言而喻的。由此可见,去解一道难以解出的难题,不如去解30道稍微简单一些的习题,其收获也许会更大。因此,我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。
第六,认真、仔细地审题。对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”所以,在实际解题时,应特别注意,审题要认真、仔细。
第七,学会画图。画图是一个翻译的过程。读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。画图时应注意尽量画得准确。画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。
最后,对于常用的公式,如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。
总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。
;④ 如何更快更好的找到物理竞赛题的解题思路
物理竞赛?
首先基础知识应该牢固的掌握,做到举一反三,比如拿到一个题目的时候,马上根据题意找出题目的考察意图,需要哪些知识点才能够解题。
然后,掌握基本的解题技巧,这里的方法很多,比如控制变量,列比例式,或者转换的方法等。当让有些题目也需要利用我的生活常识---就是要猜。偶尔利用逆向思维效果也是不错的
还有,要细心,竞赛题更加注重知识的穿插,学会理清思路,不要遗漏可能出现的情况,分析要全面透彻
学习是反复,重复的过程,多做题,你自然就会了,熟能生巧是硬道理!
实在不行,找个补习班吧!不过价格可能不叫贵
⑤ 做题要找方法指的是什么
一、排除法
1、 排除法是指在题干为正向选择的前提下,对题肢本身的错误,或者题肢观点虽然正确,但与题干要求的规定性无关,以及题肢的观点与题干要求的规定性逻辑不符的题肢进行排除的解题方法。
2、 要提高选择题的正确率,必须做到所选题肢与题干要求相适应。运用排除法,就是通过对备选题肢的一种筛选,淘汰与题干要求不一致的题肢,保留符合题意的题肢,做到题肢与题干要求相统一。应该说排除法是选择题中最常见,也是最基本的技法。
3、 运用排除法解答选择题时,应做到三个排除:一是排除观点本身错误或包含着部分错误观点的题肢,此谓排错法;二是排除观点虽然正确,但与题干要求的规定性无关的题肢,此谓排异法;三要排除含义外的外延大于或小于题干规定性要求外延的题肢,此谓排乱法。
二、辨优法
1、 辨优法是指当备选题肢中有一个以上与题干要求相关联的正确题肢,但是只有一个题肢最符合题意时,通过辨别筛选得出正确答案的方法。
2、 运用辨优法解题,应按以下两步进行:一是排除不符合题意的题肢。不符合题意的题肢有两种情况,其一是例题本身表述错误,其二是题肢虽表述正确但不反映题目干要求。二是从符合题意的题肢中筛选出一个最符合题意肢。从符合题意的题肢与题干的关系看,一般来说,题肢与题干之间是直接联系者选,间接联系者不选;本质联系者选,现象联系者不选;必然联系者选,偶然联系者不选;主要联系者选,次要联系者不选等等。
3、 解答此类题目时必须准确把握题肢与题干之间的“亲疏”关系,这是解题的关键。因此,我们在审题时,特别要注意题干的关键词语,明确题干在范围、层次、角度、条件等方面有什么特殊要求。只有辨得清,才选得准。
三、组合筛选法
1、 组合筛选法是指在组合型选择题中,通过筛选、排除含有错误题肢的组合,或者或者排除遗漏正确题肢的组合的方法。
2、 组合筛选法要求找出自己最熟知的能拿得准的题肢来推知组合选项的正误,这样就可以同时思考所有的题肢,转化为集中思考几个甚至一个题肢.这样做不仅减轻了思考压力,而且节约了解题时间,以利于迅速选出正确答案.
3、 运用组合筛选法解答组合型选择题,应依据自己最熟知的题肢来判断。⑴若此题肢错误,含有该题肢的组合项均为错误;⑵若此题肢正确,遗漏该题肢的组合项均为错误;⑶若根据某一题肢难以选出正确答案时,可以选出正确答案时,可以再根据能拿得准的另一题肢,按照以上做法来判定;⑷遇到“公共题肢”的组合时,“公共题肢”可以免审,只要审析相异题肢的正误,就能得出正确答案 。
四、因果分析法
1、因果分析法,是指解答因果关系选择题时,把题肢与题干结合起来,具体分析它们之间是否构成因果关系而做出正确判断的方法。
2、在我们的生活中,因果联系是普遍存在的,任何现象都有可能引起其他现象的产生,任何现象的产生也都是由其他现象引起的,这种引起的关系叫做因果联系。正确把握事物之间的因果联系,必须明确原因和结果既是先行后续的关系,又是引起和被引起的关系。
3、运用因果分析法解答因果关系题,应把题肢和题干结合起来分析,以题干为因,所选题肢为此原因的结果。需要注意的是,有三种情形的题肢不能入选:一是答非所问者不选;二是与题干规定性重复或变相重复不选;三是因果颠倒者不选。
4、需要注意的是事物的因果联系是多种多样的原因既有客观原因,也有主观原因;既有根本原因,也有一般原因;既有主要原因,也有次要原因。因此,解题时一定要根据题目的不同要求,分析它们之间的因果联系。
五、漫画评析法
1、漫画评析法,是指通过对题目中漫画的评价和分析,揭示出漫画的寓意,根据题干的指向,筛选出正确题肢的方法。
2、漫画评析法用于解答带有漫画的选择题。由于题目中渗有漫画,,而漫画反映的内容往往是现实生活中的突出问题、热点问题,有的漫画又极具讽刺意义,因此对题目中漫画的评价与分析,不仅能增强我们对现实生活关注的意识,而且能培养我们对所学知识的理解、判断、批评和评价能力。
3、运用漫画评析法解题,应做到一析二评,通过对漫画的分析和评价,揭示漫画中的寓意,而后按照题干的指向,筛选出符合题意的题肢。
⑥ 怎么分析数学题的解题思路
第一,从求解(证)入手——寻找解题途径的基本方法遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——必要性思维。
第二,数学式子变形——完成解题过程的关键解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?
其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。
解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。
第三、回归课本---夯实基础。
1)揭示规律----掌握解题方法高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。