导航:首页 > 方法技巧 > 三种解题方法和技巧

三种解题方法和技巧

发布时间:2023-03-13 12:01:59

1. 高中英语阅读理解解题技巧和方法有哪些

解释如下:
高中英语阅读理解解题技巧:
要想提高高中英语阅读理解,建议采用以下三种方法:
1、抓主题,正确分析文章的中心思想
要抓住文章的中心思想,就要找它的主题句,一般文章的主题句,在第一段的第一句,有时也有可能在第二段或最后一段,所以阅读时要特别注意文章的开头和结尾,但也有可能主题句不明显,难找,这时就应注意句子间的逻辑关系。如果文章所表达的意思是对某个句子进行说明,描写或解释,那么该句肯定是主题句,从而明确文章的中心思想。
2、使用不同的阅读方式找寻信息
在阅读考题中,常有关于主要事实与细节的题目可采取寻读法,找寻有关信息,迅速判断所查内容的大概位置,认真读所要的信息。对于与题目无关的内容,可采用略读法,以减少阅读时间,提高阅读效率。
3、利用已知信息进行判断推理
做阅读理解题时,往往会要求判断一些没有直接表达的观点或作者的态度,这样的考题虽没有直接的答案,但在通读全文的基础上,可根据已知的信息,进行由此及彼,由表及里的推断,从而得出准确答案,做这样的题目时,要理解和遵照作者的意图,有时作者直截了当表明观点,更多时候,借用别人的观点来表明自己的立场,或通过转折词来提出与前面相反的观点,因此确定作者的观点时,必须联系全文,通篇进行考虑分析。

2. 做数学题有何技巧方法

数学应用问题较好地考察了学生阅读理解能力与日常生活体验,同时又考察了学生获取信息后的抽象概括与建模能力,判断决策能力。那么接下来给大家分享一些关于做数学题有何技巧 方法 ,希望对大家有所帮助。

做数学题有何技巧方法

1. 观察与实验

( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。

( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。

2. 比较与分类

( 1 )比较法

是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

( 2 )分类的方法

分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

3 .特殊与一般

( 1 )特殊化的方法

特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。

( 2 )一般化的方法

4. 联想与猜想

( 1 )类比联想

类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。

通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:

( 2 )归纳猜想

牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。

归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。

5. 换元与配方

( 1 )换元法

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 你可以先观察算式,你可以发现这种要换元法的算式中总是有相同的式子,然后把他们用一个字母代替,算出答案,然后答案中如果有这个字母,就把式子带进去,计算就出来啦。

( 2 )配方法

配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解。配方法使用的最基本的配方依据是二项完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,将这个公式灵活运用,可得到各种基本配方形式

6. 构造法与待定系数法

( 1 )构造法所谓构造性的方法就是数学中的概念和方法按固定的方式经有限个步骤能够定义的概念和能够实现的方法。常见的有构造函数,构造图形,构造恒等式。平面几何里面的添辅助线法就是常见的构造法。构造法解题有:直接构造、变更条件构造和变更结论构造等途径。

( 2 )待定系数法:将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。

7. 公式法与反证法

( 1 )公式法

利用公式解决问题的方法。初中最常用的有一元二次方程求根时使用求根公式的方法;完全平方公式的方法等。如下面一组题就是完全平方公式的应用:

( 2 )反证法是“间接证明法”一类,即:肯定题设而否定结论,从而得出矛盾,就可以肯定命题的结论的正确性,从而使命题获得了证明。

中学数学新题型解题方法和技巧

1. 数学探索题

所谓探索题就是从问题给定的题设条件中探究其相应的结论并加以证明,或从给定的题目要求中探究相应的必需具备的条件、解决问题的途径。

条件探索题:解答策略之一是将题设和结论视为已知,同时推理,在演绎的过程中寻找出相应所需的条件。

结论探索题:通常指结论不确定不唯一,或结论需通过类比、引申、推广,或给出特例需通过归纳得出一般结论。可以先猜测再去证明;也可以寻求具体情况下的结论再证明;或直接演绎推证。

规律探索题:实际就是探索多种解决问题的途径,制定多种解题的策略。

活动型探索题:让学生参与一定的 社会实践 ,在课内和课外的活动中,通过探究完成问题解决。

推广型探索题:将一个简单的问题,加以推广,可产生新的结论,在初中教学中常见。如平行四边形的判定,就可以产生许多新的推广,一方面是自身的推广,一方面可以延伸到菱形和正方形中。

探索是数学的生命线,解探索题是一种富有创造性的思维活动,一种数学形式的探索绝不是单一的 思维方式 的结果,而是多种思维方式的联系和渗透,这样可使学生在学习数学的过程中敢于质疑、提问、 反思 、推广。通过探索去经历数学发现、数学探究、数学创造的过程,体会创造带来的快乐。

2. 数学情境题

情境题是以一段生活实际、 故事 、历史、游戏与数学问题、数学思想和方法于情境中。这类问题往往生动有趣,激发学生强烈的研究动机,但同时数学情景题又有信息量大,开放性强的特点,因此需要学生能从场景中提炼出数学问题,同时经历了借助数学知识研究实际问题的数学化过程。

如老师在讲有理数的混合运算时,

3. 数学开放题

数学开放题是相对于传统的封闭题而言的一种新题型,其特征是题目的条件不充分,或没有确定的结论,也正因为这样,所以开放题的解题策略往往也是多种多样的。

( 1 )数学开放题一般具有下列特征

①不确定性:所提的问题常常是不确定的和一般性的,其背景情况也是用一般词语来描述的,因此需收集其他必要的信息,才能着手解的题目。

②探究性:没有现成的解题模式,有些答案可能易于直觉地被发现,但是求解过程中往往需要从多个角度进行思考和探索。

③非完备性:有些问题的答案是不确定的,存在着多样的解答,但重要的还不是答案本身的多样性,而在于寻求解答的过程中学生的认知结构的重建。

④发散性:在求解过程中往往可以引出新的问题,或将问题加以推广,找出更一般、更概括性的结论。常常通过实际问题提出,学生必须用数学语言将其数学化,也就是建立数学模型。

⑤发展性:能激起多数学生的好奇性,全体学生都可以参与解答过程。

⑥创新性:教师难以用注入式进行教学,学生能自然地主动参与,教师在解题过程中的地位是示范者、启发者、鼓励者、合作者。

( 2 )对数学开放题的分类

从构成数学题系统的四要素(条件、依据、方法、结论)出发,定性地可分成四类;如果寻求的答案是数学题的条件,则称为条件开放题;如果寻求的答案是依据或方法,则称为策略开放题;如果寻求的答案是结论,则称为结论开放题;如果数学题的条件、解题策略或结论都要求解题者在给定的情境中自行设定与寻找,则称为综合开放题。

从学生的学习生活和熟悉的事物中收集材料,设计成各种形式的数学开放性问题,意在开放学生的思路,开放学生潜在的学习能力,开放性数学问题给不同层次的学生学好数学创设了机会,多种解题策略的应用,有力地发展了学生的 创新思维 ,培养了学生的创新技能,提高了学生的创新能力。

( 3 )以数学开放题为载体的教学特征

①师生关系开放:教师与学生成为问题解决的共同合作者和研究者

②教学内容开放:开放题往往条件不完全、或结论不完全,需要收集信息加以分析和研究,给数学留下了创新的空间。

③教学过程的开放性:由于研究的内容的开放性可以激起学生的好奇心、同时由于问题的开放性,就没有现成的解题模式,因此就会留下想象的空间,使所有的学生都可参与想象和解答。

( 4 )开放题的 教育 价值

有利于培养学生良好的思维品质;

有助于学生主体意识的形成;

有利于全体学生的参与,实现教学的民主性和合作性;

有利于学生体验成功、树立信心,增强学习的兴趣;

有助于提高学生解决问题的能力。

4. 数学建模题(初中数学建模题也可以看作是数学应用题)

数学新课程标准指出 : 要学生会应用所学知识解决实际问题 , 能适应社会日常生活和生产劳动的基本需要。初中数学的学习目的之一 , 就是培养学生解决实际问题的能力 , 要求学生会分析和解决生产、生活中的数学问题 , 形成善于应用数学的意识和能力。从各省市的中考数学命题来看 , 也更关注学生灵活运用数学知识解决实际问题能力的考查 , 可以说培养学生解答应用题的能力是使学生能够运用所学数学知识解决实际问题的基本途径之一

数学思想方法在解题中有不可忽视的作用

1. 函数与方程的思想

函数与方程的思想是中学数学最基本的思想。所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2. 数形结合的思想

数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。因此数形结合的思想对问题的解决有举足轻重的作用。

3. 分类讨论的思想

分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。原因四是实际问题中常常需要分类讨论各种可能性。

解决分类讨论问题的关键是化整为零,在局部讨论降低难度。常见的类型:类型 1 :由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;类型 2 :由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;类型 3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型 4 :由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。类型 5 :由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分类标准;③按所分类别进行讨论;④归纳小结、综合得出结论。注意动态问题一定要先画动态图。

4 .转化与化归的思想

转化与化归市中学数学最基本的数学思想之一,数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。

但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

但是转化包括等价转化和非等价转化,等价转化要求在转化的过程中前因和后果是充分的也是必要的;不等价转化就只有一种情况,因此结论要注意检验、调整和补充。转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题;将一般的转为特殊的问题;将实际的问题转为数学的问题等等使问题易于解决。

常见的转化方法有

( 1 )直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题

( 2 )换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题 . ?

( 3 )数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径 . ?

( 4 )等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的 . ?

( 5 )特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题 .

( 6 )构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题 .

( 7 )坐标法:以坐标系为工具,用计算方法解决几何问题也是转化方法的一个重要途径

转化与化归的指导思想?

( 1 )把什么问题进行转化,即化归对象 . ?

( 2 )化归到何处去,即化归目标 . ?

( 3 )如何进行化归,即化归方法 . ?

化归与转化思想是一切数学思想方法的核心 .


做数学题有何技巧方法相关 文章 :

★ 做数学选择题的十种技巧

★ 做六年级数学题的学习方法和做题方法

★ 做数学题的解题技巧方法高考

★ 做小学数学作业各类题型的方法

★ 学好数学的方法和技巧有哪些

★ 学好数学方法和技巧是什么

★ 做数学蒙题的技巧

★ 做数学选择题的技巧

★ 数学选择题八大解题方法

3. 初中语文解题方法与技巧

初中语文解题方法与技巧,六要素: 人物、时间、地点、事件的起因、经过和结果。

2.人称: 第一人称(真实可信)、第二人称(更加亲切)和第三人称(更加广泛)。

3.线索:①人线(人物的见闻感受或者事迹)②物线(某一有特意义的物品)③情线(作者或作品中主要人物的思想感情变化)④事线(中心事件)⑤时间线⑥地点线

4.顺序:顺叙、倒叙、插叙、补叙、分叙(平叙)。

5.划分:按事件的发展过程、空间转换、内容变化、人物、场景变化、感情变化、表达方式的变换来划分。

6.表达方式:叙述、描写(肖像,语言,动作,心理,环境等或正面,侧面、细节)、议论、抒情、说明等 。

7.语言的特点:形象,生动,具体。

8.表现手法:描写、衬托、渲染、对比、伏笔、铺垫、象征、比喻、以小见大、欲扬先抑、借景抒情、卒章显志、托物言志等。

v 如何找线索?

①文章的标题②各段反复出现的事物③文中议论抒情的语句④作者的思想感情(变化)⑤某一人物的见闻感受作用:文章内容井然有序地组合在一起,人物的思想性格,事情的来龙去脉。

v 记叙顺序?

1.顺叙:即按照事情的发生、发展和结局的顺序写(时间先后)。作用:使文章脉络清楚,有头有尾,给人鲜明的印象。

2.倒叙:把后发生的事情写在前面,然后再按顺序进行叙述。作用:避免平铺直叙,增强文章的生动性,使文章引人入胜。

3.插叙:在叙述过程中,由于内容的需要,中断原来情节的叙述,插入有关的情节或事件,然后再继续原来的叙述。(比如:回忆往事)作用:补充、衬托出文章的中心内容(人物或事件),丰富了情节,深化了主题。

v 人物的描写方法?

1、肖像(外貌)描写[包括神态描写](描写人物容貌、衣着、神情、姿态等):交代了人物的××身份、××地位、××处境、经历以及××心理状态、××思想性格等情况。

2、语言(对话)描写

3、行动(动作)描写:形象生动地表现出人物的××心理(心情),并反映了人物的××性格特征或××精神品质。有时还推动了情节的发展。

4、心理描写:形象生动地反映出人物的××思想,揭示了人物的××性格或者××品质。

v 修辞手法

常用的修辞方法有:比喻、拟人、夸张、排比、对偶、引用、设问、反问、反复、对比、借代、反语。

1.比喻:比喻就是"打比方"。即抓住两种不同性质的事物的相似点,用一事物来喻另一事物。比喻的三种类型:明喻、暗喻和借喻。作用:化平淡为生动;化深奥为浅显;化抽象为具体;化冗长为简洁。用在记叙、说明、描写中,能使事物生动、形象、具体,给人以鲜明的印象;用在议论文中,能使抽象道理变得具体,使深奥的道理变得浅显易懂。最常用的还是生动形象。

2.拟人:把物当作人来写,赋予物以人的言行或思想感情,用描写人的词来描写物。作用:使具体事物人格化,语言生动形象。

3.夸张:对事物的性质、特征等故意地夸张或缩小。作用:揭示事物本质,烘托气氛,加强渲染力,引起联想效果。
4.排比:把结构相同或相似、语气一致、意思相关联的三个以上的句子或成分排列在一起。作用:增强语言气势,加强表达效果,强调内容,加重感情。用来说理,可把道理阐述得更严密、更透彻;用来抒情,可把感情抒发得淋漓尽致。

5.借代:借代不直接说出所要表述的人或事物,而用与其相关的事物来代替。作用:能起到突出形象,使之具体、生动的效果。

6.夸张:夸张指为追求某种表达效果,对原有事物进行合乎情理的着意扩大或缩小。作用:烘托气氛,增强联想,给人启示。可以引起丰富的想象,更好地突出事物的特征,引起读者的强烈共鸣

7.对偶:它是一对字数相等,词性相对,结构相同,意义相关的短语或句子。作用:形式上音节整齐匀称、节奏感强,具有音律美;内容上凝练集中,概括力强。

8.反复:为了强调某个意思,某种感情,有意重复某个词语或句子。反复的种类:连续反复和间隔反复。连续反复中间无其他词语间隔。间隔反复中间有其他的词语。
9.设问:为了引起别人的注意,故意先提出问题,然后自己回答。作用:提醒人们思考,有的为了突出某些内容。
10.反问:无疑无问,用疑问形式表达确定的意思,用肯定形式反问表否定,用否定形式反问表肯定。
11.引用:引用现成的话来提高语言表达效果,分直接引用和间接引用两种。
12.借代:用相关的事物代替所要表达的事物。借代种类:特征代事物、具体代抽象、部分代替整体。
13.反语:用与本意相反的词语或句子表达本意,以按说反话的方式加强表达效果。有的讽刺揭露,有的表示亲密友好的感情。

v 关于记叙文和文学作品阅读题的解答主要从两方面着手:

一是概括文章的内容,抓住以下几个要点:

(1)把握记叙文的要素,以写事为主的应明确写什么事,写人为主的应明确写什么样的人。

(2)把握关键性语句,揣摩作者为什么,这些都是解题技巧,非常的不错了。

4. 高中解题方法 高中数学解题常用的几种解题思路和技巧

1、方程解题法

很多数学题目中有着复杂的数量关系,而且涉及到许多知识点,当我们在解析题目中的数量关系时,如果直接对其数量关系进行分析,不仅增加我们解题过程,还会提高题目整体难度,这样我们就难以理清题目中的各种关系,给我们有效解决题目带来较大麻烦。

数学题目中的各种数量关系大都具有紧密联系,所以我们可以利用方程解题法建立多种数量关系,简化解题步骤,帮助我们更好解决数学问题。

2、排除解题法

排除解题法一般用于解决数学选择题,当我们应用排除法解决问题时,需掌握各种数学概念及公式,对题目中的答案进行论证,对不符合论证关系的答案进行排除,从而有效解决数学问题。当我们在解决选择题时,必须将题目及答案都认真看完,对其之间的联系进行合理分析,并通过严谨的解题思路将不符合论证关系的条件进行排除,从而选择正确的答案。

排除解题法主要用于缩小答案范围,从而简化我们的解题步骤,提高接替效率,这样方法具有较高的准确率。

阅读全文

与三种解题方法和技巧相关的资料

热点内容
衣物护理剂使用方法 浏览:479
无观众赛事解决方法 浏览:849
对幼小研究的主要方法 浏览:271
配鱼食方法都用什么原料 浏览:66
48x125x25两种简便方法 浏览:774
不出汗的女人减肥有什么方法 浏览:836
光化学中光化学的研究方法 浏览:188
自己如何取铁耳屎的去除方法 浏览:886
解决城市拥挤的方法 浏览:246
绿豆酸浆制作方法视频 浏览:808
韭菜兰花种植方法 浏览:331
电脑玩对峙2下载方法 浏览:18
断桥铝门窗窗框安装方法 浏览:379
8字拉力器的正确锻炼方法高难度 浏览:577
按米水电安装计算方法 浏览:177
沏奶粉的正确方法 浏览:997
试述刷浆工程常用的材料配制方法 浏览:62
牙长骨刺怎么治疗方法 浏览:794
立体龙舟手工制作方法步骤视频 浏览:623
树叶盒制作方法视频 浏览:275