Ⅰ 用比例解决问题与算术方法有何区别
《用比例解决问题教学设计》
教学目标:
知识与技能:
1、使学生进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。
2、使学生能利用正反比例的意义解答比较简单的应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的分析、判断和推理能力。
过程与方法:
经历用比例知识解答问题的过程,体验解决问题的策略,培养和发展学生的发散思维的能力。
情感态度和价值观:
感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。
教学重点:用比例知识解决实际问题
教学难点:能够正确分析题中的比例关系,列出方程
一、复习铺垫,引入新课。
师:同学们,我们已经学习了哪两种比例?好,下面我们就来回忆一下有关正、反比例的知识。
师:你能准确地判断两个量之间的关系吗?下面我们来进行一个回合的抢答比拼:我会判断。(抢答要求:举手证明你有勇气,你会做,你没有抢答到但是你的手势判断正确,你仍然是最棒的。)
出示:下面每题中的两种量成什么比例?
(1)速度一定,路程和时间.
(2)路程一定,速度和时间.
(3)单价一定,总价和数量.
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.
(5)全校学生做操,每行站的人数和站的行数.
二、探究新知
(一)用正比例的知识解决问题(探究例5)
1、师:(对于学生回答教师给予肯定)看样子同学们掌握的很不错,那么,学习了正反比例到底有什么用呢?(学生交流)来我们一起看看这节课的学习目标吧!
出示学习目标:
1、进一步熟练地判断成正反比例的量,加深对正反比例概念的理解。
2、能利用正反比例的意义解答比较简单的应用题,掌握用比例知识解答问题的步骤和方法。
2、过渡语:学习知识就是为了解决问题,你能运用学过的知识去解决生活中的问题吗?看,李大妈和张奶奶在讨论什么问题,想不想去看看!(出示情境图)
(让学生读李大妈的话进行体会,主要让学生体会到通过李大妈叙述的两个条件挖出隐含条件每吨水的价格以及水费和用水吨数之间的联系,感受水的单价一定)
师:这幅图中你能知道哪些信息?你能不能运用学过的方法来帮李奶奶解决这个问题?看谁最先帮李奶奶解决这个问题!
学生自己解答,然后交流解答方法。
师:除了这种方法我们还可以用什么方法来解决了?
生:比例
3、引入新课:对,像这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题
4、师:通过大家的表情,好像老师不用教,大家都敢尝试。大家敢不敢自己试试?(相信学生,鼓励他们运用已有的知识去获取新的知识,培养他们主动学习的意识,培养学生的自学能力体现教是为了不教。)
呈现自学提示:
(1)题中有哪两种相关联的量?
(2)这两种相关联的量成什么比例关系?你是怎么判断的?
(3)你能根据这样的比例关系列出一个含有未知数的比例式吗?
5、学生交流自学结果,相互补充,呈现一个完整的解答过程。、
师:谁来说说你是怎样用比例知识来解决问题的?
根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
引导生说出等量关系:水费∶吨数=水费∶吨数,然后尝试解答。
6、师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)
7、师:比较这两种解法,你们觉得哪种方法更好理解?看来,我们在解决问题时,不光可以从不同角度思考,找到不同的解决方法,而且还要善于选择最优化的方法。当然,没有要求时,用什么方法都可以,但要求用比例解时必须用比例。
8即时练习
过渡语:同学们帮助李奶奶解决问题,李奶奶把大家认真学习,帮助她解决问题的事情告诉了邻居王大爷,李大爷正为上个月交了19.2元的水费但算不出用水都少吨而犯愁,就急匆匆地赶过来向大家请教,大家愿意帮帮他吗?
出示对话情景。
师:观察帮助要王大爷的问题和帮助李奶奶的事对比,你有什么发现?
在学生的交流中逐步认识到这道题与例5相比,条件和问题改变了,但题目中水费和用水的吨数的正比例关系没变。
师:这次还需不需要老师给你一个解决问题的提示?
一名同学在黑板上做,其余在下面做,形成一个竞赛的形式。演板的同学和大家交流自己的做题过程,教师进行鼓励和评价。
9、师:上面两道题就是用正比例解决问题,通过大家亲身实践,你感受到用正比例解决问题需要几个步骤吗?
(出示:表达是我的强项,让学生从学习提示、独立解决问题中逐步提炼归纳出自己做法,交流中逐步培养他们的表达能力。)
师:同学们真是很棒!通过自学能够感受到用比例解决问题的步骤,这次老师想考考你们是不是真正的掌握了?你们敢应战吗?
那么我们进行下一个环节:对比发现超越自我。
(二)用反比例的知识解决问题(学习P60例6)
师:解决了李奶奶、王大爷家的问题,下面的几个工人也遇到了问题,我们一起看一下吧。
1课件出示情境图,了解题目条件与问题
师:关于这个问题,同学们可以参考例5的学习经验来解决,看谁能用不同的方法来解决这个问题?
生:独立解决,并在小组交流解题思路和计算方法
师:谁来说说做这道题的解题思路(指名回答)
学情预设:一般的方法是:有的同学用算术方法,有的同学能用反比例的方法解决这个问题,如30x=20×18,x=12。
师:(教师手指30x=20×18,x=12。)为什么这样列式?根据是什么?
学情预设:估计学生能说出列式根据,因为书的总数一定,所以包数和每包的本数成反比例.也就是说,每包的本数和包数的乘积相等。
2.即时练习
(课件出示:)如果要捆15包,每包多少本?
师:会解决吗?
生:独立解决,交流订正。
3.对比正比例、反比例解决问题的相同和不同
师:通过这2个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。现在请同学们观察例5和例6,说一说他们有什么相同和不同?
生:以合作的方式探讨,然后派代表汇报探讨结果。
比较以上两题的异同点,使学生明确都是用比例的知识解决问题,不同点在于题中两种量的关系不同,计算方法也就不相同。
三、目标检测
师:课本第60做一做,是生活中的另外的问题,同学们能不能帮助解决?(要求用比例知识解)
学生自己独立解决做—做中的问题。
师:请说一说题中的数量关系,再说一说解决问题的思路。
学情预设:第1题,小明买的是同一种圆珠笔,所以圆珠笔的单价不变。那么买的支数和所用的钱数成正比例关系,所以用正比例关系能解决这个问题。第2题,用反比例关系可以解决这个问题。
四、课堂小结
1、根据这节课的学习,你认为用比例解决问题的过程应该怎样想,怎样解答,可以归纳为哪几个步骤?(组内交流)
讨论、汇报、师小结:
(1)、分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例
(2)、依据正比例或反比例意义列出方程
(3)、解方程(求解后检验),写答
2、师:这节课你有什么收获?有什么要提醒大家要特别注意的?
Ⅱ 按比例分配问题的解题方法
按比例分配问题的解题方法如下:
按比例分配必须具有两个条件才能进分配。一是分配的总数施荡番;二是分配的比。这个比可以是人数比,也可以是面积比,还可以是投资的比等等。这里的分配总数是这些比所代表的实沟珠际数量的总和。
分析:黄瓜与豆角的面积比为3:5,即分配的比是3:5,下面我们只要找出黄瓜与豆角的面积总和,就可以按比例分配了。注意这里的200平方米并不是分配的总数,并不是黄瓜与豆角的面积和,需要拿200平方米减去种西红柿的面积才是黄瓜与豆角的面积总和。具体算法同上。
Ⅲ 如何解决按比例分配问题
一、含义不同
1、按比例分配的定义在日常生活中,常常需要把一定的数量按照一定的比例来进行配,这种分配方法称为按比例分配。按比例分配是比的概念的一种应用。
2、平均数是这批数据的和除以数据总次数后所得的商。
二、算法不同
1、按比例分配的问题可以把比看作分得的份数,通过先求出1份数,再求出几份数;也可以把比转化成所占的百分比或分数,再用乘法来计算。
2、平均数的计算是用所有数据的和除以需要分的总次数后所得的商。
Ⅳ 1按比分配问题的解题方法有哪几种 2按比分配时,每种方法应先算什么再算什么
一共3种,应先算比例