‘壹’ 奥数题的解题技巧有哪些
1、直推法
就是直接进行分析推理,有条件出发运用相关的知识直接对问题进行分析,进行推导之后计算出结果,最终做出正确的分析和判断。这是最基本、最常用、最重要的方法。
适用题型:计算类选择题一般都用这种方法,其它题也常用这种方法
2、反推法
反推法即反向推导或反向代入法。反推法是由选项(即选择题的各个选项)反推条件,与条件相矛盾的选项则排除,相吻合的则是正确选项,或者将某个或某几个选项依次代入题设条件进行验证分析,与题设条件相吻合的就是正确的选项。
3、反例法
如果某个选项是一个命题,要排除该选项或说明该命题是错误的,有时只要举一个反例即可。举反例通常是用一些常用的、比较简单但又能说明问题的例子。如果大家在平时复习或做题时适当注意积累一下与各个知识点相关的不同反例,则在考试中可能会派上用场。
4、特值法(特例法)
如果题目是一个带有普遍性的命题,则可以尝试采取一种或几种特殊情况、特殊值去验证哪些选项是正确的、哪些是错误的,或者哪些极有可能是正确的或错误的,从而做出正确的选择。
5、反证法
在选择题的4个选项中,若假设某个选项不正确(或正确)可以推出矛盾,则说明该选项是正确选项(或不正确选项)。选择先从哪个选项着手证明,须根据题目条件具体分析和判断,有时可能需要一些直觉。
6、数形结合
根据条件画出相应的几何图形,结合数学表达式和图形进行分析,从而做出正确的判断和选择。这种方法常用于与几何图形有关的选择题。
7、排除法
如果可以通过一种或几种方法排除5个选项中的4个,则剩下的那个当然就是正确的选项,或者先排除5个选项中的3个,然后再对其余的2个进行判断和选择。
‘贰’ 数学倒推法是怎样的
倒推法指的是以期望的目标为基准,从后往前来推测的一种方法。做事情的时候,我们往往习惯于从现有的条件出发,条件有多少,就做多少,也就是说,条件决定结果。如果,我们以期望的目标从后往前来推测,你会发现,很多问题就会迎刃而解。
举例:
假设你五年内想要种一百颗树。那么在第三年,你应当种下六十颗树,第二年四十颗。假设今年已经过了六个月了,你还剩下六个月,也就是说从今天开始,每个星期,你需要种下一颗树。倒推法从剩下的时间反推算出每天该做的事。
(2)倒推法的解题技巧和方法扩展阅读:
倒推法的应用
1、几何证明题
几何证明是数学中比较难学的一块,很多人学代数的时候数学成绩很好,但是到了出现几何课程的时候有的人就出现了分水岭,数学成绩开始下降 原因是几何学不好 几何扯了后退,话说理科有很多分水岭知识区,遇到这些分水岭区 有些人成绩提升 有些人则成绩下降。
其实这些分水岭知识区用心耐心去学还是很好战胜的。回归正题,几何证明不会证不要紧,试试由结论推已知,看看是不是瞬间找到了连通已知到结论的线路,是的,几何其实就是如此简单的模式化的证明过程,绝大多数几何证明题用倒推法都可以很快证明出来。
不光几何证明题,理科各种应用题都是已知到结论发散 结论到已知汇聚的,如果你自己编道题就会明白许多题目都是先设定结论再由结论一层层导出的信息作为已知的。
2、谜语
谜语如同出数学应用题一样都是先设定结果 再由结果推出一些已知,结果到已知(谜底到谜面)简单,已知到结果(谜面到谜底)困难,谜语貌似不适合用倒推法,因为不是像几何证明那样给出已知 结论 证明结论,它是由已知推出未给定的结论(谜底)。
‘叁’ 数学 倒推法解题
一般都是从条件出发。而倒推法是从结论出发的,逆向思维方式。即,如果结论成立的话,我需要什么条件,然后要得到这样的条件必须先得到哪些条件,这样下去,直到跟定理,公式,或者已知条件接轨。
o(∩_∩)o
倒推法的思维过程正好是你解题过程的倒叙方式
‘肆’ 倒推法(还原法)解题
1一根铁丝,第一次用一半少1M,第二次用剩下的一半多1M,最后剩下5M,原来多少M?
解:第一次剩下:(5+1)÷1/2=12(米)
原来有:(12-1)÷1/2=22(米)
答:原来有22米。
2一筐苹果第一次卖出一半多0.5千克,第二次卖出剩下的一半和0.5KG,第三次同第二次,最后剩下0.5KG,原来由多少KG苹果
解:第二次剩下:(0.5+0.5)÷1/2=2(千克)
第一次剩下:(2+0.5)÷1/2=5(千克)
原来有:(5-0.5)÷1/2=9(千克)
答:原来有9千克苹果。