Ⅰ 假设检验的步骤是什么
根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;
由实测的样本,计算出统计量的值,并根据预先给定的显着性水平进行检验,作出拒绝或接受假设H0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。
(1)如何确定假设检验方法扩展阅读:
假设检验中所谓“小概率事件”,并非逻辑中的绝对矛盾,而是基于人们在实践中广泛采用的原则,即小概率事件在一次试验中是几乎不发生的,但概率小到什么程度才能算作“小概率事件”,显然,“小概率事件”的概率越小,否定原假设H0就越有说服力;
常记这个概率值为α(0<α<1),称为检验的显着性水平。对于不同的问题,检验的显着性水平α不一定相同,一般认为,事件发生的概率小于0.1、0.05或0.01等,即“小概率事件”。
Ⅱ 如何确定假设检验的方法
什么是假设检验:假设检验(hypothesis
testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作h0;选取合适的统计量,这个统计量的选取要使得在假设h0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显着性水平进行检验,作出拒绝或接受假设h0的判断。常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、f—检验法,秩和检验等。
假设检验的基本步骤如下:
1、提出检验假设又称无效假设,符号是h0;备择假设的符号是h1。
h0:样本与总体或样本与样本间的差异是由抽样误差引起的;
h1:样本与总体或样本与样本间存在本质差异;
预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。
2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如x2值、t值等。根据资料的类型和特点,可分别选用z检验,t检验,秩和检验和卡方检验等。
3、根据统计量的大小及其分布确定检验假设成立的可能性p的大小并判断结果。若p>α,结论为按α所取水准不显着,不拒绝h0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果p≤α,结论为按所取α水准显着,拒绝h0,接受h1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。p值的大小一般可通过查阅相应的界值表得到。
教学中的做法:
1.根据实际情况提出原假设和备择假设;
2.根据假设的特征,选择合适的检验统计量;
3.根据样本观察值,计算检验统计量的观察值(obs);
4.选择许容显着性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit);
5.根据检验统计量观察值的位置决定原假设取舍。