1. 简便运算的技巧和方法有哪些
数学简便计算方法:
一、裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法。
常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”。
(3)分母上几个因数间的差是一个定值。
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。
例题
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256,可使计算简便。
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
2. 简便运算的技巧和方法是什么五年级
简便运算的技巧和方法是:
1、一般情况下,四则运算的计算顺序是:有括号时,先算,没有括号时,先算,再算,只有同一级运算时,从左往右。
2、由于有的计算题具有它自身的特征,这时运用运算定律,可以使计算过程简单,同时又不容易出错。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)。
乘法分配律:(a+b)×c=a×c+b×c。
3、注意,对于同一个计算题,用简便方法计算,与不用简便方法计算得到的结果相同。我们可以用两种计算方法得到的结果对比,检验我们的计算是否正确。
五年级数学简便计算方法过程解析。
182×67+67×48
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行。
解题过程:
182×67+67×48
=(182+48)×67
=230×67
=15410
3. 简便计算的窍门和技巧是什么
简便计算的窍门和技巧要根据不同的题型选择,比如有凑整数法和利用乘法公式法、观察尾数法、基准数法、拆分法、分组结合法、分解质因数法、提取公因数法、数列规律法、比例分配问题、逻辑推理法。
1、凑整数法和利用乘法公式法
1)125×618×32×25=?
解题思路:125×618×32×25=(125×8)×(4×25)×618=61800000。
2)99×101=?
解题思路:99×101=(100-1)(100+1)=10000-1=9999。
3)1998²-1997×1999=?
解题思路:
1998²-1997×1999=1998²-(1998-1)×(1998+1)=1998²-1998²+1=1
4)199+99×99有多少个0?
解题思路:199+99×99 =1+2×99+99×99=(1+99)²=100²有4个0。
2、观察尾数法
1)425+683+544+828=?
A.2488 B.2486 C.2484 D.2480
答案D
解题思路:如果几个数的数值较大,又似乎没有什么规律可循,可以先考察几个答案项尾数是否都是唯一的,如果是,那么可以先利用个位数进行运算得到尾数,再从中找出唯一的对应项。如上题,各项的个位数相加=5+3+4+8=20,尾数为0,所以很快可以选出正确答案为D。
2)1111+6789+7897 =?
A、15797 B、14798 C、15698 D、15678
答案A
3)22²+23²+25²—24²=?
A、1061 B、1062 C、1063 D、1064
答案B。
解题思路:此题只需要计算出:2²+3²+5²—4²
3、基准数法
1)1997+1998+1999+2000+2001=?
A.9993 B.9994 C.9995 D.9996
答案C。
解题思路:当遇到两个以上的数相加,且他们的值相近时,可以找一个中间数作为基准,然后再加上每个加数与基准的差,从而求得他们的和。在该题中,选2000作为基准数,其他数分别比2000少3,少2,少1,和多1,故五个数的和为9995。这种解题方法还可以用于求几个相近数的算术平均数。
4、拆分法
1)132476×111=?
解题思路:
111=100+10+1
132476×111=132476×(100+10+1)
=132476×100+132476×10+132476×1
=13247600+1324760+132476=14704836
2)94×9393-92×9494=?
解题思路:原式=94×(9300+93)-92×(9400+94)=94×93×101-92×94×101=94×101=9494
3)20082009×20092008-20082008×20092009=?
解题思路:原式=(20092009-1)×(20082008+1)-20092009×20082008=20092009×20082008-20082008+20092009-1-20092009×20082008=10000
设a=20082008,b=20092008,则原式=(a+1)b-a(b+1)=b-a=10000
5、分组结合法
1)计算98+97-96-95+94+93-92-91+……-4-3+2+1
解题思路:用分组法,观察算式可以每四个数作为一组:
98+97-96-95=4 94+93-92-91=4 6+5-4-3=4
一共有96/4=24组,最后剩下2+1=3因此和为24×4+3=99
2)计算100+99+98-97-96+95+94+93-92-91+…+10+9+8-7-6+5+4+3-2-1
解题思路:原式=(100+99+98-97-96)+(95+94+93-92-91)+……+(10+9+8-7-6)+(5+4+3-2-1)=104+99+……+14+9(100/5=20个数,等差数列)=(104+9)×20/2
=113×10=1130
3)计算(1+3+5+7+…+1999)-(2+4+6+…+1998)
解题思路:从1~1999这1999个数中,奇数有1000个,偶数有999个.除1外,将剩下的999个奇数和999个偶数两两分组.
得到:1+(3-2)+(5-4)+(7-6)+…+(1999-1998)=1+999=1000
6、分解质因数法
1)甲、乙、丙三个数的乘积为1440,三个数之和是37且甲、乙两数的积比丙数的3倍多12,求甲、乙、丙各是几?
解题思路:把1440分解质因数:
1440= 12×12×10 =2×2×3×2×2×3×2×5 =(2×2×2)×(3×3)×(2×2×5)=8×9×20
如果甲、乙二数分别是8、9,丙数是20,则:8×9=72,20×3+12=72符合题中条件。
答:甲、乙、丙三个数分别是8、9、20。
2)四个连续自然数的积是1680,这四个连续自然数的和是多少?
解题思路:1680=2×2×2×2×3×5×7=5×6×7×8
5+6+7+8=26
7、提取公因数法
1)简便计算(1+12)+(2+12×2)+(3+12×3)……(100+12×100)
解题思路:(1+12)+(2+12×2)+(3+12×3)……(100+12×100)=(1+12)+2(1+12)+3(1+12)……100(1+12)=(1+2+3+……+100)×13=5050×13=65650
2)计算9999×2222+3333×3334
解题思路:9999×2222+3333×3334=3333×3×2222+3333×3334
=3333×6666+3333×3334=3333×(6666+3334)
=3333×10000=33330000
8、数列规律法
1)计算(1+3+5+…+1989)-(2+4+6+…+1988)
解题思路:
(1+3+5+…+1989)-(2+4+6+…+1988)=(1+1989)÷2×1990÷2-(2+1988)÷2×1988÷2=995×995-995×994=995×(995-994)=995
直接用等差数列求和公式:偶数列n(n+1),奇数列n²
(1+3+5+…+1989)-(2+4+6+…+1988)=995²-994×995=995
9、比例分配问题
1)一所学校一、二、三年级学生总人数450人,三个年级的学生比例为2:3:4,问
学生人数最多的年级有多少人?
A.100 B.150 C.200 D.250
解题思路:解答这种题,可以把总数看作包括了234=9份,其中人数最多的肯定是占4/9的三年级。所以答案是200人。
10、逻辑推理法
1)互为反序的两个自然数之积是92565,求这两个互为反序的自然数。(1204与4021是互为反序的自然数,120与21不是)
解题思路:这两个自然数必须是三位数。
首先,这两个自然数不能是小于100的数,因为小于100的两个最大的反序数是99和99,而99×99﹤92565.其次,这两个自然数也不能大于998,因为大于998的两个最小的反序数是999和999,而999×999>92565.
设abc与cba为所求的两个自然数,即abc×cba=92565
a×c的个位数字是5,可以推得:a×c=1×5或3×5或5×5或7×5或9×5;
而当a×c≥3×5时有:abc×cba≥305×503
即abc×cba>92565,这是不合题意的。我们可以断定:a×c=1×5,不妨设a=1 c=5。
由1b5×5b1=…有b=1,b=6。经检验,只有b=6符合题意,这时有165×561=82565。
答:所求的两个互为反序的自然数手165和561。
4. 四年级简便计算的窍门和技巧
四年级简便计算的窍门和技巧如下:
1、加法的简便运算。加法进行简便运算运用到的运算定律主要用两个:加法交换律和加法结合律,当然还有其它灵活处理的方法,其基本原则就是凑十、凑百等。总之进行简便运算处理后要有利于我们进行口算得出结果。
2、减法的简便运算。减法的简便运算主要是运用减法的运算性质,即连减两个数等于减去这两个数的和。
3、乘法的简便运算之一:巧用乘法交换律和乘法结合律进行简便运算。其基本方法也是通过交换和结合达到凑成整十、整百、整千的数,便于我们口算出结果。
4、乘法的简便运算之二:巧用乘法分配律。对乘法分配律的运用有正用乘法分配律和倒用乘法分配律两种形式。
5、乘法的简便运算之二:乘法分配律的复杂用法。有些看似不能直接运用乘法分配律的简便运算题目,需要通过变形处理,才能运用乘法分配律解决问题。
6、除法的简便运算。除法的简便运算主要是运用除法的运算性质,即一个数连续除以两个数,等于 除以这两个数的乘积。
5. 计算题的速算技巧
计算题的速算技巧
利用凑十法
2.采用整数法
就是将接近10、接近100和接近1000的数看成整数,然后再进行加减运算。例如在解答397+123这个题时,我们可以把397看成是400,然后用400+123可以得出答案为523,最后再减去3,即可得到最后的答案为520。在减法时同样也可以运用,运算方式也是一样。
3.使用移位法
把算式当中的数字连同前面的符号一起进行移位,然后再进行计算。这是小学数学口算计算当中经常可以用到的方法,例如3-4+5,很多小朋友并不知道怎么回答,认为3不能减4,实际上我们把5连同前面的+号一起移动,变换一下成为3+5-4,即可快速得出答案。
除此之外,口算速算方法还有补数法、拆分法、加括号法等具体的技巧,对于不同层次的学生而言只需要掌握一定的技巧即可。对此,你是怎么教育小孩子运用速算法的呢?请留言说一说吧!
6. 简便计算的窍门和技巧是什么
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,可以“带符号搬家”。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括号法
在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
方法三:乘法分配律法
分配法:括号里是加或减运算,与另一个数相乘,注意分配;提取公因式:注意相同因数的提取;注意构造,让算式满足乘法分配律的条件。
方法四:拆分法
拆分法属于为了方便计算把一个数拆成几个数,这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小。
方法五:裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
7. 7个快速计算的方法与技巧,可以让你的孩子成为数学大师
加,减,乘。这3个字把我们重新带回到了数学课堂。尽管这些是我们在课堂上的记忆,但是,在我们的日常生活中仍然需要它。
对于我们的孩子来说,他们需要一种快速而轻松的计算方法。如果孩子有一些计算技巧,学习就会变得轻松快乐很多。而且,不会再说“狗吃了我的作业”等逃避学习的把戏了。
现在就分享一些关于数学计算的秘密,以便您的孩子能轻松愉快地学习。最好在开始之前拿出一张纸和一支笔,自己先尝试一下。
1、用手乘以9
把手伸出来,然后给手指编号。
例如,假设需要计算4×9。首先找到4号,然后弯曲该手指,数一数弯曲的手指左右有多少根手指。左侧有3根,右侧有6根。
最后,把数字放在一起,正确答案就是36。
2、三位数相乘
比如,我们来计算652×6,首先如图所示画一张表格,然后填上数字。
每个数字都分别乘以6,填入表格中:
6×6 = 36
5×6 = 30
2×6 = 12
最后将数字相加,第一个数字和最后一个数字不变,就能得出答案。
3、大数相乘
例如,计算7×531,尽可能地拆散数字为10、100等等的倍数。
4、乘以12
将被乘数乘以10,然后将其相加两次,然后将这些数字相加即可得出答案。
5、关于15%的计算
如果想计算一个数字的15%,首先需要算出10%。让我们以400为例。将小数点向左移动一位。然后将该数字除以2,结果加40。最后,400的15%就等于60。
6、三位数的加法
将三位数分解成几部分后,更容易计算。
7、乘以9
如果需要乘以9,则可以乘以10。只要不忘记从结果中减去被乘数,就能轻松得出正确的答案。
你的孩子喜欢数学吗?孩子都在使用哪些计算技巧呢?评论告诉大家吧!
8. 数学速算方法与技巧有哪些
开普勒说:“数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的”。下面是数学速算技巧,欢迎各位阅读和借鉴。
1,加法速算 :计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算方法,比如:(1)67+48=(6+5)×10+(7-2)=115(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2,减法速算 :计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算方法,比如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
3,乘法速算 :魏氏乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。
估算法
估计,就是在精度要求不太高的情况下,粗略估计快速的方法。
它通常用于选项非常不同的情况,或者比较的数据非常不同的情况。评估的方式多种多样,更需要每个考生在实战中多加训练和掌握。
只有当选项或要比较的数字之间的差异很大时,才会进行评估,而差异的大小决定了“评估”所需的精度。
化同法
所谓“同化法”,是指“在比较两个分数时,在较大的小时内,将两个分数的分子或分母化为相同或相似,从而简化计算”的快速方法。
1.或分母变成完全一样的,所以只需要看一下分母或分子就可以了。
2. 当分子或分母降为相似时,可以直接判断某一分数的分母大,分子小,或某一分数的分母小,分子大。
直除法
“直除法”是在比较或计算复数时,用“直除法”求商的第一名,从而得到正确答案的一种快速方法。“直接划分”一般包括两种问题类型:
1. 当比较多个分数时,第一个最大/最小的数是等值数量级下的最大/小数。
2. 在计算分数时,可以通过计算不同选项的第一个位置来选择正确的答案。
“直接除法”一般按难度分为三个梯度:
1.直接能看到第一笔生意。
2.动手计算可以看到第一笔生意。
3.对于一些复杂的分数,需要计算分数的倒数的第一位来确定答案。