① 如何做数据统计与分析
数据统计与分析的方法有:1.比较分析法,是统计分析中最常用的方法。是通过有关的指标对比来反映事物数量上差异和变化的方法。指标分析对比分析方法可分为静态比较和动态比较分析。静态比较是同一时间条件下不同总体指标比较,如不同部门、不同地区、不同国家的比较,也叫横向比较;动态比较是同一总体条件不同时期指标数值的比较,也叫纵向比较。这两种方法既可单独使用,也可结合使用。2.分组分析法,统计分析不仅要对总体数量特征和数量关系进行分析,还要深入总体的内部进行分组分析。分组分析法就是根据统计分析的目的要求,把所研究的总体按照一个或者几个标志划分为若干个部分,加以整理,进行观察、分析,以揭示其内在的联系和规律性。
统计分组法的关键问题在于正确选择分组标值和划分各组界限。
② 如何合理选择统计方法
为什么说统计分组的关键是选择分组标志和划分相邻两组间...
组标志的选择是统计分组的关键。分组标志,即将同质总体区分为不同组的标准或依据。分组标志一旦选定,就必然突出了总体在该标志下的性质差别,其他的差别看不见了。分组标志选择不当,不但无法显示现象的根本特征,甚至会混淆事物的性质,歪曲社会经济的真实情况。 分组标志的选择直接影响分组后的数据所能表现出来的特征,即分组后的数据是否与研究目的相关。举例来说,你要研究老龄化问题,那么对人口进行分组时一定要选择年龄(或者年龄是最重要的一个分组标志)。如果你用其它标志分组,可能会导致分组后数据不能满足研究目的(如按文化程度分组)。所以分组标志的选择是统计分组的关键。
划分相邻组的界限,就是确定组限。合理的组限才能实现统计分组的目的:组间性质不同,组内性质相同。
③ 统计数据分析有哪些方法
1、对比分析法
就是将某一指标与选定的比较标准进行比较,比如:与历史同期比较、与上期比较、与其他竞争对手比较、与预算比较。一般用柱状图进行呈现。
2、结构分析法
就是对某一项目的子项目占比进行统计和分析,一般用饼图进行呈现。比如:A公司本年度营业额为1000万,其中饮料营业额占33.6%、啤酒占55%,其他产品的营业额占11.4%。
3、趋势分析法
就是对某一指标进行连续多个周期的数据进行统计和分析,一般用折线图进行呈现。比如:A公司前年度营业额为880万,去年900万,本年度1000万,预计明年为1080万。
4、比率分析法
就是用相对数来表示不同项目的数据比率,比如:在财务分析中有“盈利能力比率、营运能力比率、偿债能力比率、增长能力比率”。
5、因素分析法
就是对某一指标的相关影响因素进行统计与分析。比如,房价与物价、土地价格、地段、装修等因素有关
6、综合分析法
就是运用多种分析方法进行数据的统计与分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。
④ 统计分析方法整理
京东一面挂、阿里简历挂,陆续收到字节的笔试和滴滴的笔试,我相信快手的我也会收到的!!!
机会越来越少!但也决不放弃!!!秋招虐我千百遍,我心依然向明月。
害,互联网失败了,市场咨询公司混两年,杀回互联网用盐。
分析方法的选择应当是以目标为导向的,根据不同的项目和数据类型选择合适的方法。
统计分析方法可以分为描述统计分析和推断统计分析两类。
描述统计:表格、图形、数量指标(均值方差等)
推断统计 :通过样本推断总体,可以进行因果关系揭示、结果预测等(接下来主要总结这个哈~)
假设检验是在对总体参数提出假设的基础上,利用样本信息来判断假设是否成立的方法。在假设检验中,首先需要提出两种假设:原假设和备择假设。原假设为研究者想收集证据予以推翻的假设。备择假设是研究者想要验证的假设。
假设检验步骤
(1)提出假设
(2)构造检验统计量,并计算该统计量,获得p值
(3)比较显着性水平和p值,做出判断
PS:KS日常实习面试,面试官问一个人对三张图片打分,想知道这三张图片的打分有没有差异,用什么检验?三组人对三张图进行打分,比较三张图的差异是什么检验?
回归分析是为了探求因变量与自变量之间的因果关系的分析方法。不仅可以解释x对y的影响大小,还可以通过回归方程进行预测。
R方:拟合优度,表示因变量y的总变差中被多个自变量所共同解释的比例
线性关系检验:(F检验)所有自变量联合起来对因变量的影响是否显着
回归系数检验:(t检验)单个自变量对因变量的影响是否显着
多重共线性:方差扩大因子(VIF值)越大表明多重共线性越严重,一般小于10,严格小于5
可以用相关系数对变量进行剔除,也可以采用逐步回归的方法进行改进。
数据降维的方法
通过考察变量间的相关性,找到少数几个主成分来代表原来的多个原始变量的信息
在实施过程中,通过方差贡献率来确定主成分的个数,如果两个主成分累计方差贡献率达到85%,那么就可以确定前两个成分为主成分
数据降维的方法
通过找到少数几个因子来代表原始变量
因子分析的步骤:
(1)数据检验——KMO和球形度检验
(2)提取因子——主成分法
(3)因子旋转——方差最大正交旋转(方便因子的命名和解释)
(4)计算因子得分——根据因子得分系数矩阵,可以算出每个样本的因子得分,通过因子得分可以对样本进行排序,分类等等
按照相似性把对象进行分类的方法,使组内差异尽可能小,组间差异尽可能大
层次聚类法(系统聚类法)——事先不需要确定类别个数
K-means聚类法——事先需要确定类的个数
类别个数:根据研究目的、每个类别样本的分布情况,类别间的差异大小 确定。
⑤ 如何运用统计分析方法
统计分析法就是运用数学方式,建立数学模型,对通过调查获取的各种数据及资料进行数理统计和分析,形成定量的结论。
统计分析方法是目前广泛使用的现代科学方法,是一种比较科学、精确和客观的测评方法。其具体应用方法很多,在实践中使用较多的是指标评分法和图表测评法。
⑥ 统计方法如何选择
统计资料丰富且错综复杂,要想做到合理选用统计分析方法并非易事。对于同一个资料,若选择不同的统计分析方法处理,有时其结论是截然不同的。
正确选择统计方法的依据是:
①根据研究的目的,明确研究试验设计类型、研究因素与水平数;
②确定数据特征(是否正态分布等)和样本量大小;
③ 正确判断统计资料所对应的类型(计量、计数和等级资料),同时应根据统计方法的适宜条件进行正确的统计量值计算;
最后,还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择统计分析方法。
⑦ 统计分析方法 有哪些统计分析方法
1、描述统计。描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
(1)缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
(2)正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
2、假设检验
(1)参数检验。参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。U验 使用条件:当样本含量n较大时,样本值符合正态分布。T检验 使用条件:当样本含量n较小时,样本值符合正态分布。单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
(2)非参数检验。非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。虽然是连续数据,但总体分布形态未知或者非正态;体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
3、信度分析
检査测量的可信度,例如调查问卷的真实性。分类:
(1)外在信度:不同时间测量时量表的一致性程度,常用方法重测信度
(2)内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
4、列联表分析。用于分析离散变量或定型变量之间是否存在相关。
对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。
5、相关分析
研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
(1)单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;
(2)复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;
(3)偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。
6、方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
(1)单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系
(2)多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
(3)多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
(4)协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,
⑧ 常用统计分析方法有哪些
1、对比分析法
对比分析法指通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。
横向对比指的是不同事物在固定时间上的对比,例如,不同等级的用户在同一时间购买商品的价格对比,不同商品在同一时间的销量、利润率等的对比。
纵向对比指的是同一事物在时间维度上的变化,例如,环比、同比和定基比,也就是本月销售额与上月销售额的对比,本年度1月份销售额与上一年度1月份销售额的对比,本年度每月销售额分别与上一年度平均销售额的对比等。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。
2、分组分析法
分组分析法是指根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。
根据指标的性质,分组分析法分为属性指标分组和数量指标分组。所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。
3、预测分析法
预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡。
最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。
5、AB测试分析法
AB 测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。
例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。
除此之外,要想做好数据分析,读者还需掌握一定的数学基础,例如,基本统计量的概念(均值、方差、众数、中位数等),分散性和变异性的度量指标(极差、四分位数、四分位距、百分位数等),数据分布(几何分布、二项分布等),以及概率论基础、统计抽样、置信区间和假设检验等内容,通过相关指标和概念的应用,让数据分析结果更具专业性。
⑨ 正确选择相关性分析的统计方法
转自: https://www.medsci.cn/article/show_article.do?id=55c91839569a
相关性分析主要用于:(1)判断两个或多个变量之间的统计学关联;(2)如果存在关联,进一步分析关联强度和方向。
那么,什么样的研究可以进行相关性分析呢?我们在这里列举了几个相关性研究的例子供大家参考:
确定要进行相关性分析后,对两个变量或多个变量进行相关性分析所采取的统计方法是不同的。那么,怎么判断研究变量的数量呢?
我们分别就两个变量的研究和三个及以上变量的研究进行了举例,帮助大家理解。同时,我们也对例子中变量数据类型进行了描述(如,连续变量、二分类变量、无序分类变量和有序分类变量)。
确定拟分析变量之间的相关性后,我们需要判断变量的数据类型。
变量的数据类型主要分为连续变量、二分类变量、无序分类变量和有序分类变量4类。拟分析的变量可以同属于一个数据类型,也可以分属不同的数据类型。根据这两个变量数据类型的不同,应采用的统计分析方法也不同。
连续变量是指对连续的指标测量所得到的数值,比如体重。其特点是等距区间的差异相同,例如体重在50kg-60kg之间的差异与60kg-70kg之间的差异相同。连续变量的示例如下:
有序分类变量可以有两个或者多个已排序的类别。举例来说,如果某患者的治疗结果是“痊愈”、“好转”、“不变”或者“恶化”。这就是一个有序分类变量,因为可以对四个类别进行排序。
需要注意的是,虽然我们可以对有序分类变量的类别排序,但还需要判断这种类别排序是不是等距的。例如,用各年龄段的近似中位数代表年龄类别,即24(18-30)岁、40(31-50)岁、60(51-70)岁、80(70岁以上)岁,可以将年龄视为定距变量。
但将患者的诊疗结果“痊愈”、“好转”、“无变化”或者“恶化”就不能认为是等距的,换句话说,不能认为“好转”是“无变化”的2倍;也不能认为“痊愈”和“好转”的差异与“不变”和“恶化很满意”的差异一样,即有序分类变量各类别之间不是可能是定距、也可能不是定距的,这是与连续变量的根本不同。有序分类变量的示例如下:
患者对医疗效果的满意程度,用5类测量:1-非常不满意、2-不满意、3-一般、4-满意、5-非常满意
对疾病的疗效:用4类测量:1-痊愈、2-好转、3-不变、4-变差
BMI指数是一种用于评估体重水平的指标。一般来说,BMI是连续变量(例如BMI为23.7或BMI为34.1),但按以下方式分类时可以视为有序分类变量:体重过轻(BMI小于18.5)、健康/正常体重(BMI在18.5—23.9之间)、超重(BMI在24—27.9之间)和肥胖(BMI大于28)。
二分类变量是只有两个类别的分类变量。二分类变量的类别之间没有顺序,不能像有序分类变量的类别那样进行排序。比如,性别变量就是一个二分类变量,可以分为“男性”和“女性”两个分类。再如,罹患心脏病也是一个二分类变量,分为“是”和“否”两个分类。
二分类变量类别是互斥的,一个研究对象不能同时分属于两个类别,比如一个人不能同时是男性或者女性,也不能同时患有心脏病又没有心脏病。二分类变量的示例如下:
性别,两个类别:男性或女性
罹患心脏病,两个类别:是或否
研究分组,两个类别:实验组或对照组
无序分类变量是具有三个及以上类别的分类变量。无序分类变量的类别之间没有内在顺序,也不能像有序分类变量类别那样进行排序。比如,出行方式是一个典型的无序分类变量,可以分为自行车、自驾、出租车、地铁或公交5个类别。无序分类变量的类别也是互斥的,一个研究对象不能同时分属于不同的类别,比如一次出行不能同时坐地铁又自己开车。无序分类变量的示例如下:
手机品牌,四个类别:苹果、三星、华为或其他
头发的颜色,五个类别:棕色、黑色、金色、红色或者灰色
民族,七个类别:汉族、回族、蒙古族、满族、维吾尔族、朝鲜族或其他
自变量也称为预测变量或解释变量,因变量也称为应答变量或结局变量。两者的区分在于,自变量可以影响因变量,因变量的值取决于对应自变量的值。也可以用因果关系来区分自变量和因变量,即自变量的变化导致了因变量的变化(但自变量和因变量之间并不一定真的存在因果关系)。自变量是对因变量的描述,而因变量可以被自变量所解释。
研究设计也可以帮助我们区分自变量和因变量。举例来说,我们计划开展一项研究分析不同剂量药物的治疗效果,治疗药物就是这个研究的自变量,治疗效果则是因变量。
比如我们想知道抗感染药物剂量(1.5 mg / d、4 mg /d或者 8 mg/d)与患者发热时长的关系,抗感染药物剂量就是自变量,因为这个剂量的是由研究者干预产生的,且很可能是发热时长差异的原因;而同时发热时长就是这项研究的因变量。
横断面调查并不区分自变量和因变量。举例来说,研究者根据问卷调查研究对象的工作效率(1-5类:1代表非常高效、5代表非常低效)和锻炼情况(1-4类:1代表经常锻炼、4代表不锻炼)的关系。
在该研究中,受调查者的工作效率和锻炼情况并不存在明确的因果关系,因为效率高可能意味着受调查者有更多的锻炼时间,而反之经常锻炼可能也会提高工作效率。因此,我们就不区分该研究的自变量和因变量。
本文先说说研究中涉及两个变量的情况。
Pearson相关用于评估两个连续变量之间的线性关联强度。这种统计方法本身不区分自变量和因变量,但如果您根据研究背景已经对变量进行了区分,我们仍可以采用该方法判断相关性。
Pearson相关不区分自变量和因变量。虽然这不影响我们采用Pearson相关分析两个连续变量的相关性,但如果还是想通过统计方法区分一下,可以采用线性回归。
这里还需要判断有序分类变量是否为定距变量。如果认为拟分析的有序分类变量是定距变量,我们就可以为变量中的类别赋值,然后根据这些数值进行分析(即看作连续变量),比如测量满意度(从“完全同意”到“完全不同意”5个类别)就是一个定距变量,可以用1-5为各类别赋值,即1 =完全同意、2 =同意、3 =一般、4 =不同意、5 =完全不同意。
对于不能作为定距变量的有序分类变量,比如军衔的类别(少将、中将、上将、大将等)之间就不是等距的,就不能赋值后对数值进行分析(只能对类别进行分析)。
实际上,将有序分类变量作为连续变量进行分析,这在大多数情况下可能不符合我们的研究目的。对类别进行分析是对有序分类变量相关性分析的常见选择。但是,如果基于的研究背景,待分析的有序分类变量确实可以作为定距变量处理,也是可以的。
Mantel-Haenszel 趋势检验。该检验也被称为Mantel-Haenszel 卡方检验、Mantel-Haenszel 趋势卡方检验。该检验根据研究者对有序分类变量类别的赋值,判断两个有序分类变量之间的线性趋势。
Spearman相关又称Spearman秩相关,用于检验至少有一个有序分类变量的关联强度和方向。
Kendall's tau-b 相关系数是用于检验至少有一个有序分类变量关联强度和方向的非参数分析方法。该检验与Spearman相关的应用范围基本一致,但更适用于存在多种关联的数据(如列联表)。
卡方检验常用于分析无序分类变量之间的相关性,也可以用于分析二分类变量之间的关系。但是该检验只能分析相关的统计学意义,不能反映关联强度。因此,我们常联合Cramer's V检验提示关联强度。
Fisher精确检验可以用于检验任何R C数据之间的相关关系,但最常用于分析2 2数据,即两个二分类变量之间的相关性。与卡方检验只能拟合近似分布不同的是,Fisher精确检验可以分析精确分布,更适合分析小样本数据。但是该检验与卡方检验一样,只能分析相关的统计学意义,不能反映关联强度。
确定进行两个二分类变量的相关性分析后,我们需要判断是否区分自变量和因变量。
相对风险是流行病学或前瞻性队列研究中的常用指标,可以在一定条件下比较两个比例之间的关系,但其提示的结果是比值而不是差异。
比值比可以计算多类研究的关联强度,也是很多统计检验(如二分类logistic回归)的常用指标。在相对风险指标不适用的病例对照研究中,比值比仍可以很好地反映结果。
卡方检验可用于分析两个二分类变量之间的关系。但是该检验只能分析相关的统计学意义,不能反映关联强度。因此,该检验可以联合Phi (φ)系数提示关联强度。
Fisher精确检验可以用于检验任何R C数据之间的关系,但最常用于分析2 2数据,即两个二分类变量之间的相关性。与卡方检验只能拟合近似分布不同的是,Fisher精确检验可以分析数据的精确分布,更适用于小样本数据。但是该检验与卡方检验一样,只能分析相关的统计学意义,不能反映关联强度。
Point-biserial相关。Point-biserial相关适用于分析二分类变量和连续变量之间的相关性。其实,该检验是Pearson相关的一种特殊形式,与Pearson相关的数据假设一致,也可以在SPSS中通过Pearson相关模块进行计算,我们会在教程中具体介绍。
确定进行二分类变量和有序分类变量的相关性分析后,我们需要判断是否区分自变量和因变量:
有序Logistic回归。有序Logistic回归在本质上并不是为了分析二分类变量和有序分类变量之间的相关性。但我们仍可以用有序logistic回归及其对应的OR值判断这两类变量之间的统计学关联。
Cochran-Armitage 检验。Cochran-Armitage 检验又称Cochran-Armitage 趋势检验,常用于分析有序分类自变量和二分类因变量之间的线性趋势。该检验可以判断随着有序分类变量的增加,二分类因变量比例的变化趋势,是对其线性趋势的统计学分析。我们将在教程中进一步解释这一问题。
此问题可以使用Mantel-Haenszel卡方检验或Cochran-Armitage趋势检验。Mantel-Haenszel卡方检验也称线性趋势检验(Test for Linear Trend)或定序检验(Linear by Linear Test)。
Mantel-Haenszel卡方检验和Cochran-Armitage趋势检验的区别是:Mantel-Haenszel卡方检验要求一个变量是有序分类变量,另一个变量可以是二分类变量,也可以是有序多分类变量。而Cochran-Armitage趋势检验要求一个变量是有序分类变量,另一个变量是二分类变量。
SPSS不提供Cochran-Armitage趋势检验, Mantel-Haenszel卡方可以得到近似的结果。Cochran-Armitage趋势检验可以在SAS等其它软件中实现(SAS可以同时提供Cochran-Armitage趋势检验和Mantel-Haenszel卡方检验的结果)。
Biserial秩相关:Biserial秩相关可以用于分析二分类变量和有序分类变量之间的相关性。在用二分类变量预测有序分类变量时,该检验又称为Somers' d检验。此外,Mann-Whitney U检验也可以输出Biserial秩相关结果。
Spearman相关。没有适用于分析有序分类变量和连续变量相关性的检验方法,我们需要将连续变量视为有序分类变量进行检验,即分析两个有序分类变量之间的关系。在这种情况下,我们可以应用Spearman相关或者其他针对有序分类变量的检验方法。