导航:首页 > 方法技巧 > 极限四则运算方法及技巧

极限四则运算方法及技巧

发布时间:2023-01-10 05:52:05

⑴ 求极限的方法有哪些

一、利用极限四则运算法则求极限

函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则

lim[f(x)±g(x)]=limf(x)±limg(x)=A±B

lim[f(x)・g(x)]=limf(x)・limg(x)=A・B

lim==(B≠0)

(类似的有数列极限四则运算法则)现以讨论函数为例。
对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:

1.直接代入法

对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。
直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。

2.无穷大与无穷小的转换法

在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。

(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。

(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。

3.除以适当无穷大法

对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。

4.有理化法

适用于带根式的极限。

二、利用夹逼准则求极限

函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)
利用夹逼准则关键在于选用合适的不等式。


三、利用单调有界准则求极限

单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。

四、利用等价无穷小代换求极限

常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。

等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。

五、利用无穷小量性质求极限

在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。

六、利用两个重要极限求极限

使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。

七、利用洛必达法则求极限

如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。

⑵ 极限四则运算法则是什么

lim(A+B)limA+limB

lim(A-B)=limA-limB

limAB=limA×limB

lim(A/B)limA/limB

极限的求法有很多种:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

⑶ 极限的四则运算是什么

极限的四则运算是等价无穷小替换,洛必达法则,泰勒公式,导数定义这四种运算的呢。

数列极限涉及的常规方法主要有四类:夹逼定理,定积分的定义(主要是针对部分和求极限),转化为函数极限(归结原则),单调有界准则。其中前三者用于求数列极限,最后一个是用于证明数列极限存在。其中,四则运算、两个重要极限作为最基本的知识,不列入常规方法中。

极限

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中。

逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。

极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。

⑷ 极限四则运算法则是什么

极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B。

四则运算是指加法、减法、乘法和除法四种运算。四则运算是小学数学的重要内容,也是学习其它各有关知识的基础。

相关内容解释:

1.是指无限趋近于一个固定的数值。

2.数学名词。在高等数学中,极限是一个重要的概念。

极限可分为数列极限和函数极限。

学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以为了要利用代数处理代表无限的量,于是精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,而引入了一个过程任意小量。

就是说,除数不是零,所以有意义,同时,这个过程小量可以取任意小,只要满足在Δ的区间内,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能。这个概念是成功的。

⑸ 极限的四则运算是什么

极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B。

极限四则运算的前提条件是:两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B,才能进行极限四则运算法则。

求极限基本方法有:

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。

2、无穷大根式减去无穷大根式时,分子有理化。

3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

⑹ 求极限的方法大全

1、利用函数的连续性求函数的极限(直接带入即可)

如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。

⑺ 极限四则运算法则是什么

极限四则运算法则:在极限都存在的情况下,和差积商的极限,等于极限的和差积商。

极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。


极限存在与否的判断:

1、结果若是无穷小,无穷小就用0代入,0也是极限。

2、若是分子的极限是无穷小,分母的极限不是无穷小,答案就是0,整体的极限存在。

3、如果分子的极限不是无穷小,而分母的极限是无穷小,答案不是正无穷大,就是负无穷大,整体的极限不存在。

4、若分子分母各自的极限都是无穷小,就必须用罗毕达方法确定最后的结果。

⑻ 极限的四则运算

lim[(根号下n^2+n)-n],n趋向于无穷的极限如下:

解题方法:

1、若是普普通通的问题,不涉及不定式,就直接代入。

2、若代入后的结果是无穷大,就写极限不存在。

3、若代入后是不定式,那要看根号是怎么出现的。

A、若在分子或分母上,则进行分子有理化、分母有理化、或同时有理化。

B、若是整体的根式,可能需要运用关于e的重要极限,如[f(x)]^(1/x)。

C、也可能需要运用取整后,再运用夹挤定理,如N^(1/N)。

D、可能要解方程,如单调有界递增递减。

⑼ 数列极限的四则运算法则

数列极限的四则运算法则如下:

当数列{an},{bn}分别以a,b为极限时,数列{an±bn}的极限是a±b,数列{anbn}的极限是ab;当bbn不等于0时,{an/bn}的极限是a/b;当函数f,g分别以a,b为极限时,函数f±b的极限是a±b,函数fg的极限是ab;当bg不等于0时,{f/g}的极限是a/b。

数列极限的四则运算法则证明方法如下:

定理:设{an}与{bn}为收敛数列,则

(1)lim(n->∞)(an±bn)=lim(n->∞)an±lim(n->∞)bn;

(2)lim(n->∞)(an·bn)=lim(n->∞)an·lim(n->∞)bn.

若bn≠0且lim(n->∞)bn≠0,则lim(n->∞)(an/bn)=lim(n->∞)an/lim(n->∞)bn.

证:设lim(n->∞)an=a,lim(n->∞)bn=b,则ε>0,正整数N,

使当n>N时,有|an-a|<ε; |bn-b|<ε.

(1)则|(an+bn)-(a+b)|≤|an-a|+|bn-b|<2ε.

所以lim(n->∞)(an+bn)=lim(n->∞)an+lim(n->∞)bn;

∵an-bn=an+(-bn),

所以lim(n->∞)(an-bn)=a-b=lim(n->∞)an-lim(n->∞)bn.

(2)由有界性定理,存在正数M,对一切n有|bn|<M.

∴|an·bn-ab|=|bn(an-a)+a(bn-b)|≤|bn||an-a|+|a||bn-b|<(|bn|+|a|)ε<(M+|a|)ε.

∴lim(n->∞)(an·bn)=lim(n->∞)an·lim(n->∞)bn.

∵an/bn=an·1/bn,所以lim(n->∞)(an/bn)=lim(n->∞)an/lim(n->∞)bn.

阅读全文

与极限四则运算方法及技巧相关的资料

热点内容
期货利润计算方法 浏览:991
手机电脑大文件传输用什么方法 浏览:62
宝宝手指发育锻炼方法 浏览:743
审计案例分析的方法 浏览:162
excel表格画任意划线的方法步骤 浏览:486
薄荷叶菊花泡水正确方法 浏览:550
如何用简单的方法去除小黑虫 浏览:197
最简单的套筒方法 浏览:406
抹灰的重量计算方法 浏览:315
乒乓球桌底座安装方法 浏览:969
淀粉白度检测方法食品伙伴网 浏览:745
手鼓的使用方法视频 浏览:952
电脑屏保动态视频怎么设置在哪里设置方法 浏览:188
素描拿笔的方法有哪些 浏览:307
移门柜安装方法 浏览:399
慢性咳嗽的治疗方法 浏览:990
科学研究论文方法 浏览:679
隔空给手机充电的方法 浏览:700
数学因式分解方程的方法怎么用 浏览:644
双层弹簧臂力器正确锻炼方法 浏览:507