⑴ 求极限的方法有哪些
一、利用极限四则运算法则求极限
函数极限的四则运算法则:设有函数,若在自变量f(x),g(x)的同一变化过程中,有limf(x)=A,limg(x)=B,则
lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
lim[f(x)・g(x)]=limf(x)・limg(x)=A・B
lim==(B≠0)
(类似的有数列极限四则运算法则)现以讨论函数为例。
对于和、差、积、商形式的函数求极限,自然会想到极限四则运算法则,但使用这些法则,往往要根据具体的函数特点,先对函数做某些恒等变形或化简,再使用极限的四则运算法则。方法有:
1.直接代入法
对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。
直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。
2.无穷大与无穷小的转换法
在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。
(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。
(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。
3.除以适当无穷大法
对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。
4.有理化法
适用于带根式的极限。
二、利用夹逼准则求极限
函数极限的夹逼定理:设函数f(x),g(x),h(x),在x的某一去心邻域内(或|x|>N)有定义,若①f(x)≤g(x)≤h(x);②f(x)=h(x)=A(或f(x)=h(x)=A),则g(x)(或g(x))存在,且g(x)=A(或g(x)=A)。(类似的可以得数列极限的夹逼定理)
利用夹逼准则关键在于选用合适的不等式。
三、利用单调有界准则求极限
单调有界准则:单调有界数列必有极限。首先常用数学归纳法讨论数列的单调性和有界性,再求解方程,可求出极限。
四、利用等价无穷小代换求极限
常见等价无穷小量的例子有:当x→0时,sinx~x;tanx~x;1-cosx~x;e-1~x;ln(1+x)~x;arcsinx~x;arctanx~x;(1+x)-1~x。
等价无穷小的代换定理:设α(x),α′(x),β(x)和β′(x)都是自变量x在同一变化过程中的无穷小,且α(x)~α′(x),β(x)~β′(x),lim存在,则lim=lim。
五、利用无穷小量性质求极限
在无穷小量性质中,特别是利用无穷小量与有界变量的乘积仍是无穷小量的性质求极限。
六、利用两个重要极限求极限
使用两个重要极限=1和(1+)=e求极限时,关键在于对所给的函数或数列作适当的变形,使之具有相应的形式,有时也可通过变量替换使问题简化。
七、利用洛必达法则求极限
如果当x→a(或x→∞)时,两个函数f(x)与g(x)都趋于零或趋于无穷小,则可能存在,也可能不存在,通常将这类极限分别称为“”型或“”型未定式,对于该类极限一般不能运用极限运算法则,但可以利用洛必达法则求极限。
⑵ 极限四则运算法则是什么
lim(A+B)limA+limB
lim(A-B)=limA-limB
limAB=limA×limB
lim(A/B)limA/limB
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
⑶ 极限的四则运算是什么
极限的四则运算是等价无穷小替换,洛必达法则,泰勒公式,导数定义这四种运算的呢。
数列极限涉及的常规方法主要有四类:夹逼定理,定积分的定义(主要是针对部分和求极限),转化为函数极限(归结原则),单调有界准则。其中前三者用于求数列极限,最后一个是用于证明数列极限存在。其中,四则运算、两个重要极限作为最基本的知识,不列入常规方法中。
极限
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中。
逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
⑷ 极限四则运算法则是什么
极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B。
四则运算是指加法、减法、乘法和除法四种运算。四则运算是小学数学的重要内容,也是学习其它各有关知识的基础。
相关内容解释:
1.是指无限趋近于一个固定的数值。
2.数学名词。在高等数学中,极限是一个重要的概念。
极限可分为数列极限和函数极限。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以为了要利用代数处理代表无限的量,于是精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,而引入了一个过程任意小量。
就是说,除数不是零,所以有意义,同时,这个过程小量可以取任意小,只要满足在Δ的区间内,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能。这个概念是成功的。
⑸ 极限的四则运算是什么
极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B。
极限四则运算的前提条件是:两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。设limf(x)和limg(x)存在,且令limf(x)=A,limg(x)=B,才能进行极限四则运算法则。
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
⑹ 求极限的方法大全
1、利用函数的连续性求函数的极限(直接带入即可)
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。
⑺ 极限四则运算法则是什么
极限四则运算法则:在极限都存在的情况下,和差积商的极限,等于极限的和差积商。
极限四则运算法则的前提是两个极限存在,当有一个极限本身是不存在的,则不能用四则运算法则。极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。
极限存在与否的判断:
1、结果若是无穷小,无穷小就用0代入,0也是极限。
2、若是分子的极限是无穷小,分母的极限不是无穷小,答案就是0,整体的极限存在。
3、如果分子的极限不是无穷小,而分母的极限是无穷小,答案不是正无穷大,就是负无穷大,整体的极限不存在。
4、若分子分母各自的极限都是无穷小,就必须用罗毕达方法确定最后的结果。
⑻ 极限的四则运算
lim[(根号下n^2+n)-n],n趋向于无穷的极限如下:
解题方法:
1、若是普普通通的问题,不涉及不定式,就直接代入。
2、若代入后的结果是无穷大,就写极限不存在。
3、若代入后是不定式,那要看根号是怎么出现的。
A、若在分子或分母上,则进行分子有理化、分母有理化、或同时有理化。
B、若是整体的根式,可能需要运用关于e的重要极限,如[f(x)]^(1/x)。
C、也可能需要运用取整后,再运用夹挤定理,如N^(1/N)。
D、可能要解方程,如单调有界递增递减。
⑼ 数列极限的四则运算法则
数列极限的四则运算法则如下:
当数列{an},{bn}分别以a,b为极限时,数列{an±bn}的极限是a±b,数列{anbn}的极限是ab;当bbn不等于0时,{an/bn}的极限是a/b;当函数f,g分别以a,b为极限时,函数f±b的极限是a±b,函数fg的极限是ab;当bg不等于0时,{f/g}的极限是a/b。
数列极限的四则运算法则证明方法如下:
定理:设{an}与{bn}为收敛数列,则
(1)lim(n->∞)(an±bn)=lim(n->∞)an±lim(n->∞)bn;
(2)lim(n->∞)(an·bn)=lim(n->∞)an·lim(n->∞)bn.
若bn≠0且lim(n->∞)bn≠0,则lim(n->∞)(an/bn)=lim(n->∞)an/lim(n->∞)bn.
证:设lim(n->∞)an=a,lim(n->∞)bn=b,则ε>0,正整数N,
使当n>N时,有|an-a|<ε; |bn-b|<ε.
(1)则|(an+bn)-(a+b)|≤|an-a|+|bn-b|<2ε.
所以lim(n->∞)(an+bn)=lim(n->∞)an+lim(n->∞)bn;
∵an-bn=an+(-bn),
所以lim(n->∞)(an-bn)=a-b=lim(n->∞)an-lim(n->∞)bn.
(2)由有界性定理,存在正数M,对一切n有|bn|<M.
∴|an·bn-ab|=|bn(an-a)+a(bn-b)|≤|bn||an-a|+|a||bn-b|<(|bn|+|a|)ε<(M+|a|)ε.
∴lim(n->∞)(an·bn)=lim(n->∞)an·lim(n->∞)bn.
∵an/bn=an·1/bn,所以lim(n->∞)(an/bn)=lim(n->∞)an/lim(n->∞)bn.