Ⅰ 电磁线圈 制作方法
1.螺线管:线圈骨架的圆筒内径约11毫米,长约80毫米,两端圆盘边宽约8毫米,均以硬纸片剪、卷、粘而成,如图19.6-3所示。若有现成的塑料或其他材料的骨架,尺寸差不多也可以用。以直径约0.5毫米的漆包线,在骨架上排绕1000匝,并在300匝及600匝处抽头。铁心为直径约1厘米、长约9厘米的软铁棒(普通建筑用钢筋或相应尺寸的铁螺钉均可)。
2.带小磁片的指针:小磁片,用长约4厘米的两段废钢锯条,在条形磁铁上单向摩擦数次使之磁化做成。指针是一根长约40厘米的竹针,下部约5厘米一段为6×6毫米2的方形,下端纵向中间开口,夹住两片小磁片(磁极同向),并用细线扎紧。指针其余部份,自方形开始削圆,直径约3毫米逐渐至尖端,以使重心接近小磁片为好。利用一枚大头针支持竹针使竹针水平平衡从而找到竹针的重心。用钳子夹住大头针在酒精灯上把大头针烧红后,在竹针重心偏尖端方向约5毫米处锥眼(要烧、锥几次后才能锥透)另用一根新的大头针,穿过竹针上的眼,把大头针的尖端扎进竖板的适当位置,作为指针转动轴。
3.电路:直流电源10-12伏;变阻器50欧、1.5安。演示电表用1.5安分流器。
4.各部件在竖板上安装时,应当使接通电路后,螺线管与指针小磁片相对端为同极性,使小磁片被斥向右,指针尖端向左偏。开关S是用软线接的鳄鱼夹,以方便地与300匝、600匝或1000匝各接线柱接通。
【使用方法】
1.抽出铁心,接通300匝抽头,调节滑动变阻器,可以看到随着电流强度的增大(或减小),指针偏转角度也增大(或减小)。说明通过螺线管的电流越强,所产生的磁性也越强。
2.改变接通螺线管的匝数,同时每变换一次就调节滑动变阻器,使电流表示数保持一定值(如0.5安),则看到螺线管的匝数越多(或越少),指针偏转角度也越大(或越小)。说明通电螺线管的匝数越多,其磁性也越强。
3.接通300匝抽头,电流调至0.2安,指针偏转角度不大,但插入铁心,则指针偏转角度显着增大。这说明铁心在通电螺线管中被磁化,使螺线管的磁场大大增强。
【注意事项】
1.指针转轴眼一定要锥正,不能有上下左右的倾斜,以保证指针在竖直面上转动。
2.本演示器是根据同性磁极相斥的原理制作的。由于同性磁极斥力随着距离的增大而减小,所以未通电时,指针下端的小磁片,应尽量靠近螺线管一端,通电后,斥力将磁片推远,两者距离增大,斥力随之减小。当斥力对整个指针产生的力矩与重力回复力矩达到平衡时,指针呈现“稳定平衡”。反之,若两者产生的是吸引力,那势必要求磁片与螺线管相距一段较远的距离,这时吸力微弱,但一旦磁片被吸动,两者距离减小,吸力随之增大,一直到磁片被吸引到距螺线管最近为止。这样,通电螺线管的磁性随电流大小、匝数多少、铁心有无等因素影响的变化量,将难以表现出来,所以两者一定要相斥,这个实验才能成功。
Ⅱ 电感线圈怎样制作及连线
电感线圈可用绝缘电线来绕制,也可用漆包线、纱包线来绕制;可用截面是圆形的、也可用截面是矩形的绕制;可以是空心的、可以是实心的。线两头就是电路图上面电感两级。
Ⅲ 自己制作一个简单的电感高频加热线圈
感应加热简介
电磁感应加热,或简称感应加热,是加热导体材料比如金属材料的一种方法。它主要用于金属热加工、热处理、焊接和熔化。
顾名思义,感应加热是利用电磁感应的方法使被加热的材料的内部产生电流,依靠这些涡流的能量达到加热目的。感应加热系统的基本组成包括感应线圈,交流电源和工件。根据加热对象不同,可以把线圈制作成不同的形状。线圈和电源相连,电源为线圈提供交变电流,流过线圈的交变电流产生一个通过工件的交变磁场,该磁场使工件产生涡流来加热。
感应加热原理
感应加热表面淬火是利用电磁感应原理,在工件表面层产生密度很高的感应电流,迅速加热至奥氏体状态,随后快速冷却得到马氏体组织的淬火方法,当感应圈中通过一定频率的交流电时,在其内外将产生与电流变化频率相同的交变磁场。金属工件放入感应圈内,在磁场作用下,工件内就会产生与感应圈频率相同而方向相反的感应电流。由于感应电流沿工件表面形成封闭回路,通常称为涡流。此涡流将电能变成热能,将工件的表面迅速加热。涡流主要分布于工件表面,工件内部几乎没有电流通过,这种现象称为表面效应或集肤效应。感应加热就是利用集肤效应,依靠电流热效应把工件表面迅速加热到淬火温度的。感应圈用紫铜管制做,内通冷却水。当工件表面在感应圈内加热到一定温度时,立即喷水冷却,使表面层获得马氏体组织。
感应电动势的瞬时值为:
式中:e——瞬时电势,V;Φ——零件上感应电流回路所包围面积的总磁通,Wb,其数值随感应器中的电流强度和零件材料的磁导率的增加而增大,并与零件和感应器之问的间隙有关。
为磁通变化率,其绝对值等于感应电势。电流频率越高,磁通变化率越大,使感应电势P相应也就越大。式中的负号表示感应电势的方向与的变化方向相反。
零件中感应出来的涡流的方向,在每一瞬时和感应器中的电流方向相反,涡流强度取决于感应电势及零件内涡流回路的电抗,可表示为:
式中,I——涡流电流强度,A;Z——自感电抗,Ω;R——零件电阻,Ω;X——阻抗,Ω。
由于Z值很小,所以I值很大。
零件加热的热量为:
式中Q——热能,J;t——加热时间,s。
对铁磁材料(如钢铁),涡流加热产生的热效应可使零件温度迅速提高。钢铁零件是硬磁材料,它具有很大的剩磁,在交变磁场中,零件的磁极方向随感应器磁场方向的改变而改变。在交变磁场的作用下,磁分子因磁场方向的迅速改变将发生激烈的摩擦发热,因而也对零件加热起一定作用,这就是磁滞热效应。这部分热量比涡流加热的热效应小得多。钢铁零件磁滞热效应只有在磁性转变点A2(768℃)以下存在,在A2以上,钢铁零件失去磁性,因此,对钢铁零件而言,在A2点以下,加热速度比在A2点以上时快。
感应加热具体应用
感应加热设备
感应加热设备是产生特定频率感应电流,进行感应加热及表面淬火处理的设备。
感应加热表面淬火
将工件放在用空心铜管绕成的感应器内,通入中频或高频交流电后,在工件表面形成同频率的的感应电流,将零件表面迅速加热(几秒钟内即可升温800~1000度,心部仍接近室温)后立即喷水冷却(或浸油淬火),使工件表面层淬硬。
与普通加热淬火比较感应加热表面淬火具有以下优点:
1、加热速度极快,可扩大A体转变温度范围,缩短转变时间。
2、淬火后工件表层可得到极细的隐晶马氏体,硬度稍高(2~3HRC)。脆性较低及较高疲劳强度。
3、经该工艺处理的工件不易氧化脱碳,甚至有些工件处理后可直接装配使用。
4、淬硬层深,易于控制操作,易于实现机械化,自动化。
感应加热(高频电炉)制作教程
成本估算:
紫铜管紫铜带:210元
EE85加厚磁芯2个:60元
高频谐振电容3个:135元
胶木板:60元
水泵及PU管:52元
PLL板:30元
GDT板:20元
电源板:50元
MOSFET:20元
2KW调压器:280元
散热板:80元
共计:997元
总体架构:
串联谐振2.5KW 锁相环追频ZVS,MOSFET全桥逆变;
磁芯变压器两档阻抗变换,水冷散热,市电自耦调压调功,母线过流保护。
先预览一下效果,如下图:
加热金封管3DD15
4. PLL锁定调整。将PLL板JP1跳线的1,2脚短路,使VCO的电压控制权转交给鉴相滤波网络。保持高压输入为30VAC,用示波器监测槽路部分J3接口电压波形形状和频率。此时用改锥在±一圈范围内调整W1,若示波器波形频率保持不变,形状仍然为良好的正弦波。则表示电路已近稳定入锁,如果无法锁定,交换槽路部分J1的接线再重复上述步骤。当看到电路锁定后,在加热线圈中放入螺丝刀杆,这时因为有较大的等效负载阻抗,波形幅度下降,但仍然保持良好的正弦波。如果此时失锁,可微调W1保持锁定。
5. 电流滞后角调整。电路锁定后,用示波器同时监测槽路部分J3接口电压以及PLL板GDT2或GDT1接口电压,缓慢调节W2,使电流波形(正弦波)稍微落后于驱动电压波形,此时全桥负载呈弱感性,并进入ZVS状态。
6. 工件加热测试,上述步骤均成功后,即可开始加热工件。先放入工件,用万用表电流档监测高压电流。缓慢提升自耦调压器输出电压,可以看到工件开始发热,应保证220VAC高压下,电流小于15A。这时功率达到2500W。当加热体积较大的工件时,因为等效阻抗大,须将槽路部分S1切换至下方触点。
至此,整个感应加热电路调试完毕。开始感受高温体验吧。
Ⅳ 电磁加热线圈的制作方法
方法如下:
1、先选取保温棉,厚约20-30mm厚,割好尺寸包住铁管。
(4)自制电感线圈连接方法扩展阅读:
如何选择电线
1、看包装,国标的电线包装往往都比较好、整齐,有质感。
2、打开包装看一下里面的电线,国标的电线1.5-----6平方的电线要求是皮厚(绝缘厚度)0.7mm。过厚的一般是非标的,相应的其内芯就不够。
3、用火烧一下,离开后5s内熄灭的为阻燃材料,国标线具有阻燃功能,非标线一般不做阻燃,但也有的非标线做了阻燃。
4、看内芯,内芯的材质(铜质)光亮度越高铜质越好,并且光度匀,有光泽,没有层次感。国标要求内芯一定要用无氧铜。非标的如黑杆铜,可能存在事故隐患。
5、内芯的粗细国家有一定的要求,但不是很严格。
6、长度,国家没有强制一定要打米,可是有很多厂家也打了米,打了米的并不一定是国标的,但一般的国标一般没有打米。非标的打米那只是一种手段。
7、国家规定电线上一定要打有一定的标识,最大不会超过500mm都会有下个相同的标识打出来,上面一般有产品的商标,厂家名称,执行标准等。