导航:首页 > 方法技巧 > 如何解六年级应用题的方法

如何解六年级应用题的方法

发布时间:2022-12-28 19:36:46

1. 六年级比的应用题解题技巧是什么

按比分配应用题这类应用题实际上与之前学过的平均分问题、归一问题、分数应用题的解题方法和思路是如出一辙的。尤其是比和分数本来就有着千丝万缕的联系,比的应用题完全可以转化成分数应用题来解答。

例如:2:3,就是2份比3份,可以是4和6,6和9。遇到难点的,如:甲乙两个服装厂12月生产的数量比为6:7,单价比为11:10,两个厂的总产值是8160万元。求两个服装厂的产值分别是多少万元?

解:甲厂产值:乙厂产值=(甲单价X甲数量):(乙单价X乙数量)=(11X6):(10X7)=33:35。

8160÷(33+35)=120(万元),120X33=3960(万元),120X35=4200(万元)。

列方程解应用题步骤:

1、实际问题(审题,弄清所有已知和末知条件及数量关系)。

2、设末知数(一般直接设,有时间接设),并用设的末知数的代数式表示所有的末知量。

3、找等量关系列方程。

4、解方程,并求出其它的末知条件。

5、检验(检验是否是原方程的解、是否符合实际意义)。

6、作答。

2. 六年级数学应用题解题方法技巧

六年级数学应用题解题方法技巧如下:

1、细心地发掘概念和公式。记忆是理解的基础。很多同学对概念和公式不够重视,这类问题反映在三个方面。

(1)对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

(2)对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。

同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。

3. 六年级数学应用题求解题方法


·
表示乘号】
第一题,等量关系是广场的面积。也就是说,不论你用多少块方砖,无论边长多少,都是同样的面积。
所以,设需要x块
①广场面积:0.3×0.3×1200
②广场面积:0.4×0.4·x
①②相等,既然乘积相得,那么商也相等。
所以1200:0.3×0.3=x:0.4×0.4
2、设仓库里原有水泥x吨。
运出20%,即:
x·(1-20%)
【运出就用减法,运进就用加法。此式子等同于
x-20%x
这样应该比较好理解吧。运出了原来的20%,就是运出了
20%x,此时剩下的就用原来的减去运出的。】
又运进9吨,就+9咯。x·(1-20%)+9
x·(1-20%)+9就是现有的水泥
现有水泥:原有水泥=5:4
所以x·(1-20%)+9:x
=5:4
3、设乙车间有x人。【这类题目,有两个未知数,如果题目说xx是yy的……,那么就设yy为未知数,比较容易算】
甲车间是乙车间的七分之五,所以甲车间的人数:七分之五·x
乙车间调四人到甲车间,时,甲车间有七分之五·x+4
乙车间有x-4
两个车间人数就相同了。所以上面两个式子相等。七分之五·x+4=x-4
-------------------
总之啊,解数学应用题最关键的就是找等量关系~这样就容易解了。
张某雨加油哈~!

4. 数学六年级应用题解题方法

小学数学应用题应该怎么解决?有什么 方法 技巧?下面是我为大家整理的关于数学六年级应用题解题方法,希望对您有所帮助。欢迎大家阅读参考学习!

1数学六年级应用题解题方法

图形运动型试题:初中数学的图形运动有平移、翻折和旋转。图形变换是一种重要的 思想 方法,它是一种以变化的、运动的观点来处理孤立的、离散的问题的 思想 ,很好地领会这种解题的思想实质,并能准确合理地使用,在解题中会收到奇效,也将有效地提高思维品质。在解题中我们要通过实验、操作、观察和想象的方法掌握运动的本质,在图形的运动中找到不变量,然后解决问题。

阅读理解型试题:这是检验学生是否“会学”数学的一类试题,通过让学生阅读一段新的数学知识,然后来解答有关习题。实验操作型试题:观察、试验、猜想、探索是新课标的基本概念,这类题有效地考查了学生综合运用知识分析问题和解决问题的能力,试题文字量较大,考查学生良好的基本功底和快速的理解能力,数形结合的思路在题中充分体现。

2数学应用题方法

公式求解法:许多应用题可以根据题目的数量关系, 总结 、归纳、推导出解答这类题目的数量关系式(或公式),如:圆柱体积计算公式,路程、速度、时间的关系式等。这些应用题在教学过程中,要让学生熟练掌握这些数量关系式(公式),并正确灵活运用于应用题的解答。

转化求解法:转化求解策略是数学解题的一个重要技巧,它把生疏的题目转化成熟悉的题目;把繁难的题目转化成简单的题目;把抽象的题目转化为具体的题目,教学中要引导学生灵活运用转化技巧化生为熟,化繁为简,化抽象为具体,提高学生解题能力。假设求解法: 假设求解就是根据应用题的已知条件,先做一个假设,然后根据题意和假设之间的矛盾进行分析、调整,寻求解题途径。

3数学应用题方法

细心地发掘概念和公式:很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

收集自己的典型错误和不会的题目:同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

4数学应用题方法

建立错题库。生活中的有心人都可以发现我们往往会犯同样的错误,小孩子就更加了。很多孩子会在某一道或某一类题上屡次出错。究其原因,主要是因为没有很好的掌握相关知识点,当然有些题本身就容易迷惑孩子,可作业或考试中却常常出现,针对这种情况,最好的办就是准备错题本,把出过错的题摘抄下来,并写上错因分析,并在学习中不断积累,建立属于自己的错题库。

多问。学习中最怕的就是不懂装懂。要提高数学成绩,必须把不懂的问题解决好,所以在数学学习中遇有不懂的问题,经过思考后仍然不懂就要问老师或同学了。多交流。提高数学成绩,除了以上几个方面,还要注意多与同学交流。交流的方法可以是多种多样的。其中最为有效的方法是,同学之间出题互考。这样也可以提高数学习的兴趣。

相关 文章 :

1. 六年级数学各种方法与复习技巧

2. 小学六年级的数学应用题解答

3. 六年级数学应用题分类讲解

4. 小学数学应用题解题方法

5. 学好六年级数学关键靠方法

5. 六年级数学应用题解题基本思路

在做六年级数学应用题时遇到不会做的题目该怎么办呢?应用题有什么解题思路呢?我在此整理了六年级数学应用题解题基本思路,供大家参阅,希望大家在阅读过程中有所收获!

六年级数学应用题解题基本思路介绍

分析法:分析法是从题中所求问题出发,逐步找出要解决的问题所必须的已知条件的思考方法。

综合法:综合法就是从题目中已知条件出发,逐步推算出要解决的问题的思考方法。

分析、综合法:一方面要认真考虑已知条件,另一方面还要注意题目中要解决的问题是什么,这样思维才有明确的方向性和目的性。

分解法:把一道复杂的应用题拆成几道基本的应用题,从中找到解题的线索。

图解法:图解法是用画图或线段把题目听条件和问题明确地表示出来,然后“按图索骥”寻找解答应用题的方法。

假设法:假设法就是解题时,对题目中的某些现象或关系做出适当的假设,然后,用事实与假设之间的矛盾中找到正确的解题方法。

注意事项

解题的方法有时候并不是一成不变的,这就需要我们从多个思维去考虑,找到最适合自己的那一种那么就是最好的。

六年级数学应用题练习题1

1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵

需要种的天数是2150÷86=25天

甲25天完成24×25=600棵

那么乙就要完成900-600=300棵之后,才去帮丙

即做了300÷30=10天之后即第11天从A地转到B地。

2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份

所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份

因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份

所以45-30=15天,每亩面积长84-60=24份

所以,每亩面积每天长24÷15=1.6份

所以,每亩原有草量60-30×1.6=12份

第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份

新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛

所以,一共需要38.4+3.6=42头牛来吃。

两种解法:

解法一:

设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元

乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元

甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元

三人合作一天完成(5/12+4/15+7/20)÷2=31/60,

三人合作一天支付(750+400+560)÷2=855元

甲单独做每天完成31/60-4/15=1/4,支付855-400=455元

乙单独做每天完成31/60-7/20=1/6,支付855-560=295元

丙单独做每天完成31/60-5/12=1/10,支付855-750=105元

所以通过比较

选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元

4.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.

把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍

上面部分和下面部分的高度之比是(50-20):20=3:2

所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍

所以长方体的底面积和容器底面积之比是(4-1):4=3:4

独特解法:

(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),

所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,

所以体积比就等于底面积之比,9:12=3:4

5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

把甲的套数看作5份,乙的套数就是6份。

甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份

甲比乙多4-3=1份,这1份就是10套。

所以,甲原来购进了10×5=50套。

6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

把一池水看作单位“1”。

由于经过7/3小时共注了一池水,所以甲管注了7/12,乙管注了5/12。

甲管的注水速度是7/12÷7/3=1/4,乙管的注水速度是1/4×5/7=5/28。

甲管后来的注水速度是1/4×(1+25%)=5/16

用去的时间是5/12÷5/16=4/3小时

乙管注满水池需要1÷5/28=5.6小时

还需要注水5.6-7/3-4/3=29/15小时

即1小时56分钟

继续再做一种方法:

按照原来的注水速度,甲管注满水池的时间是7/3÷7/12=4小时

乙管注满水池的时间是7/3÷5/12=5.6小时

时间相差5.6-4=1.6小时

后来甲管速度提高,时间就更少了,相差的时间就更多了。

甲速度提高后,还要7/3×5/7=5/3小时

缩短的时间相当于1-1÷(1+25%)=1/5

所以时间缩短了5/3×1/5=1/3

所以,乙管还要1.6+1/3=29/15小时

再做一种方法:

①求甲管余下的部分还要用的时间。

7/3×5/7÷(1+25%)=4/3小时

②求乙管余下部分还要用的时间。

7/3×7/5=49/15小时

③求甲管注满后,乙管还要的时间。

49/15-4/3=29/15小时

7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2

骑车和步行的时间比就是2:7,所以小明步行3/10需要5÷(7-2)×7=7分钟

所以,小明步行完全程需要7÷3/10=70/3分钟。

8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.

乙车比甲车多行11-7+4=8分钟。

说明乙车行完全程需要8÷(1-80%)=40分钟,甲车行完全程需要40×80%=32分钟

当乙车行到B地并停留完毕需要40÷2+7=27分钟。

甲车在乙车出发后32÷2+11=27分钟到达B地。

即在B地甲车追上乙车。

9.甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

甲车和乙车的速度比是15:10=3:2

相遇时甲车和乙车的路程比也是3:2

所以,两城相距12÷(3-2)×(3+2)=60千米

10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

解法如下:(共12辆车)

本题的关键是集装箱不能像其他东西那样,把它给拆散来装。因此要考虑分配的问题。

六年级数学应用题练习题2

1、甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的3/5,A、B两地相距多少米?

2、一所小学扩建校舍,原计划投资28万元,实际投资比原计划节省了 1/7,实际投资多少万元?

3、玩具厂计划生产游戏机2000台,实际超额完成 1/10,实际生产多少台?

4、一根电线长40米,先用去 3/8,后又用去 3/8米,这根电线还剩多少米?

5、某种书先提价 1/6,又降价 1/6,这种书的原价高还是现价高?

6、一本书共100页,小明第一天看了1/5,第二天看了1/4,剩下的第三天看完,第三天看了多少页?

7、光明小学十月份比九月份节约用水 1/9,十月份用水72吨,九月份用水多少吨?

8、修一条公路,修了全长的 3/7后,离这条公路的中点还有1.7米,求这条公路的长?

9、光明小学有60台电脑,比五爱小学多 1/5,五爱小学有多少台电脑?

10、光明小学有60台电脑,比五爱小学少1/5,五爱小学有多少台电脑?

11、一袋大米两周吃完,第一周吃了1/3,第二周比第一周多吃了5千克,这袋大米共重多少千克?

12、小明读一本书,已读的页数是未读的页数的3/2,他再读30页,这时已读的页数是未读的7/3,这本书共多少页?

13、饲养小组养的小白兔是小灰兔的3/5,小灰兔比小白兔多24只,小白兔和小灰兔共多少只?

14、某渔船一天上午捕鱼1200千克,比下午少1/7,全天共捕鱼多少千克?

15、一桶油,第一次倒出1/5,第二次倒出15千克,第三次倒出1/3,还剩25/3千克,这桶油原有多少千克?

16、一条路已经修了全长的1/3,如果再修60米,就正好修了全长的一半,这条路长多少米?

17、牧场养牛480头,比去年养的多1/5,比去年多多少头?

18、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?

19、打扫多功能教师,甲组同学1/3小时可以打扫完,乙组同学1/4小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?

6. 六年级上册数学应用题怎么解  可以教我一些技巧吗

六年级分数应用题有三种题型:
1、求一个数的几分之几,用乘法;
2、求一个数是另一个数的几分之几,用除法;
3、已知一个数的几分之几是多少,求这个数,用除法(见教材)。
通俗的说求分率和单位1用除法,求分率的对应量(比较量)用乘法。
解这类问题的关键是:首先准确找出单位1,其次是找出比较量对应的分率,然后确定计算方法
举例如下:
实际投资3760万元,实际比计划少投资1/9,,计划投资多少万元?分析:题中找

比……少(多)后面是分率,……处就是单位1。
因此
计划投资
(
?
)
对应
单位1
计划投资-
实际投资
对应
1/9
实际投资(3760万元
)
对应
1-1/9
列式:3760÷(1-1/9)
这类问题最好画出线段图直观的展现出来,学生更容易接受。。

7. 六年级数学应用题解题思路

在小学 六年级数学 中,一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。我在此整理了六年级数学应用题解题思路,供大家参阅,希望大家在阅读过程中有所收获!

六年级数学一般应用题解题思路

要点:从条件入手?从问题入?

从条件入手分析时,要随时注意题目的问题

从问题入手分析时,要随时注意题目的已知条件。

例题如下:

某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。剩下的如果平均每天生产150个,还需几天完成?

思路分析:

已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。

已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。

六年级数学典型应用题解题思路

(一)求平均数应用题

解答求平均数问题的规律是:总数量÷对应总份数=平均数

注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。

例题一如下:

一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?

思路分析:

要求这天平均每小时碾米约多少千克,需解决以下三个问题:

1、这一天总共碾了多少米?(一天包括上午、下午)。

2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。

3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。)

(二) 归一问题

归一问题的题目结构是:

题目的前部分是已知条件,是一组相关联的量;

题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。

解题规律是,先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。

例题如下:

6台 拖拉机 4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?

思路分析:

先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。

(三) 相遇问题

指两运动物体从两地以不同的速度作相向运动。

相遇问题的基本关系是:

1、相遇时间=相隔距离(两个物体运动时)÷速度和。

例题如下:两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?

2、相隔距离(两物体运动时)=速度之和×相遇时间

例题如下:一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。已知货车平均每小时行45千米,客车每小时的速度比货车快20﹪,求甲乙相距多少千米?

3、甲速=相隔距离(两个物体运动时)÷相遇时间-乙速

例题如下:一列货车和一列客车同时从相距648千米的两地相对开出,4.5小时相遇。客车每小时行80千米,货车每小时行多少千米?

相遇问题可以有不少变化。

如两个物体从两地相向而行,但不同时出发;

或者其中一个物体中途停顿了一下;

或两个运动的物体相遇后又各自继续走了一段距离等,都要结合具体情况进行分析。

另:相遇问题可以引申为工程问题:即工效和×合做时间=工作总量

六年级数学应用题1

1、有一批零件,甲、乙两人同时加工,12天完成,乙、丙两人同时加工,9天完成,甲、丙两人同时加工,18天完成,三人同时加工,几天可以完成?

2、小明身上的钱可以买12枝铅笔或4块橡皮,他先买了3枝铅笔,剩下的钱可以买几块橡皮?

3、加工一批零件,第一天和第二天各完成了这批零件的2/9,第三天加工了80个,正好完成了加工任务,这批零件共有多少个?

4、电视机厂五月份计划生产电视机5000台,实际生产了6000台,超额完成百分之几?

5、一种电脑原价6800元,现降价1700元,降价百分之几?

6、一段路,甲走完全程需20分钟,乙走完全成需15分钟,甲的速度是乙速度的百分之几?

7、一份稿件,原计划5天抄完,结果只用4天就抄完了,实际工作效率比计划提高了百分之几?

8、从甲堆煤中,取出1/5给乙堆,这时两堆煤重量就相等了,原来乙堆煤的重量比甲堆煤的重量少百分之几?

9、六(1)班有男生32人,女生28人。六(2)班人数是六(1)班的95%,六(2)班有多少人?

10、一条围巾,如果卖100元,可赚25%,如果卖120元,可赚百分之几?

11、买来 足球 55个,买来的 篮球 比足球少20%,买来篮球多少个?

12、一堆沙子,第一次运走40%。第二次运走30%,还剩下48吨。这堆沙子有多少吨?

13、一个面粉厂,用20吨小麦能磨出13000千克的面粉。求小麦的出粉率?

14、在100克水中,加入25克盐。这盐水的含盐率是多少?

15、某种菜籽出油率为33%,要想榨出100千克菜籽油。至少要多少千克菜籽。

16、李师傅加工200个零件,经检验4个是废品,合格率是多少?照这样计算,加工700个零件,不合格的有多少个。

17、小红的爸爸将5000元钱存入银行活期储蓄,月利率是0.60%,4个月后,他可得税后利息多少元?可取回本金和利息共有多少元?

18、王老师每月工资1450元,超出1200元的部分按5%交纳个人所得税。王老师每月税后工资是多少元?

19、一种篮球原价180元,现在按原价的七五折出售。这种篮球现价每只多少元?每只便宜了多少元?

20、李丹家去年收玉米300千克,前年收玉米249千克,去年比前年的玉米增产了几成?

六年级数学应用题1答案:

1、三人同时加工需要8天

2、还可以买3块橡皮(12支铅笔=4块橡皮,说明1块橡皮=3支铅笔)

3、这批零件共有144个

4、超额完成了20%

5、降价25%

6、甲速度是乙速度的75%

7、实际工作效率比计划提高了25%

8、乙堆煤的重量比甲堆煤少40%

9、六(2)班有57人

10、分两种情况回答(即销售利润率和成本利润率):

①如果是相对于价格的25%:则利润为100×25%=25,所以成本应该是100-25=75

卖120元时,利润为120-75=45,所以此时的销售利润率为45÷120=37.5%

②如果是相对于成本的25%:设成本为X,则(100-X)÷X=25%,解得X=80,所以成本为80,当售价为120时,利润为120-80=40,所以成本利润率为40/80=50%

11、篮球有44个

12、这堆沙子有160吨

13、小麦的出粉率是65%

14、这盐水的含盐率是20%

15、至少需要303千克菜籽

16、合格率98%;700个中不合格的有14个

17、可得税后利息96元;可取回本金和利息一共5096元

18、王老师每月税后工资1437.5元

19、这种篮球现价每只135元,每只便宜了45元

20、去年比前年的玉米增产了2成

六年级数学应用题2

1、明明在商店里买了一个计算器,打八五折,花了68元,这个计算器原价多少元?

2、小华家前年收了4000千克稻谷,去年因为虫害,比前年减产三成五,去年小华家收稻谷多少千克?

3、某商品现价18元,亏了25%,亏了多少元?如果想赢利25%,应按多少元出售该商品?

4、含盐率10%的盐水30千克,加入多少千克盐后,才能制成含盐率25%的盐水?

5、某件皮衣原价1800元,现降价270元该商品是打了几折出售的?

6、 保险 公司有员工120人,其中男职工是女职工人的50%,这个保险公司有男职工多少人?

7、某工程队,第一天修600米,第二天修全长的20%,第三天修了全长的25%,这时修了的占全长的75%,这条公路全长多少米?

8、小军以每套72元的价格买了一套打折服装,比原价便宜8元。这套服装打了几折出售的?

9、1520千克的盐水中,含盐率为25%,要使这些盐水变为含盐率为50%的盐水,需蒸发掉多少千克水?

10、玩具商店同时出售两种玩具售价都是120元,一件可赚25%,另一件赔25%。如果同时出售这两件玩具,算下来是赔还是赚,如赔,赔多少元,如赚,赚多少元?

11、一个圆形鱼塘,周长314米,这个鱼塘的面积是多少平方米?

12、一块圆形菜地,直径20米,现在要在菜地上覆盖一层塑料薄膜,至少需要薄膜多少平方米?如果每平方米薄膜价格0.5元,这些薄膜要花多少元?

13一辆自行车车轮外直径70厘米,如果平均每分钟车轮转100周,从望直港镇到宝应县城大约需要25分钟。望直港镇到宝应县城大约多少千米?

14、要修一条长1800米的水渠,工作5天后,修了的占未修的1/3,照这样的进度修下去,还要多少天才能修完这条水渠?

15、六年级数学兴趣小组活动时,参加的同学是未参加的3/7,后来又有30人参加,这时参加的同学是未参加的2/3,六年级一共有多少人?

16、学校美术小组人数的5/6正好是科技小组人数的5/8。已知美术小组有24人。这学校科技小组有多少人?

17、一批化肥先运走25%,又运走18吨,这时还剩45%没有运,这批化肥共有多少吨?

18、学校用40米长的铁丝(接头处不计)围成一块长方形菜地,已知长方形宽是长的1/4,学校的这块菜地面积是多少?

六年级数学应用题2答案:

1、 这个计算器原价80元

2、 去年收稻谷2600千克

3、 亏了6元(该商品成本价24元);如果想盈利25%,应按30元出售

4、 加入6千克盐

5、 该商品打85折出售

6、 这个保险公司有男职工40人

7、 这条公路全长2000米

8、 这套服装是打9折出售的

9、 需要蒸发掉760千克水

10、这个鱼塘面积7850平方米

11、至少需要薄膜314平方米,需要花157元

12、大约5.5千米

13、还要10天才能修完这条水渠

14、六年级一共有300人

15、科技小组有32人

16、这批化肥共有60吨

17、这块菜地面积是64平方米

8. 小学六年级列方程解应用题知识整理

小学六年级列方程解应用题知识整理

1 列方程解应用题的意义

* 用方程式去解答应用题求得应用题的未知量的方法。

2 列方程解答应用题的步骤

* 弄清题意,确定未知数并用x表示;

* 找出题中的数量之间的相等关系;

* 列方程,解方程;

* 检查或验算,写出答案。

3列方程解应用题的方法

* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的'等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4列方程解应用题的范围

小学范围内常用方程解的应用题:

a一般应用题;

b和倍、差倍问题;

c几何形体的周长、面积、体积计算;

d 分数、百分数应用题;

e 比和比例应用题。

;

9. 小学六年级应用题解答的技巧

1,多读题,读明白题意。2,弄清楚一些数学关系,知道一般解答方法。3,认真细心,不出小错误。

10. 六年级数学应用题怎样解答窍门

小学六年级数学应用题(用四种方法解答)
客车和货车同时从甲、乙两地的中点向相反方向行驶,5小时后,客车到达甲地,货车离乙地还有60千米,已知货车与客车的速度比是5:7,求甲、乙两地相距多少米?(用四种方法解答)
第一:设他们的速度公比为x,客车的速度就是7x,货车的速度就是5x,可得到:
7x*5-5x*5=60,
解得x=6,
再得:客车的速度就为42m/s,货车的速度就为30m/s.
甲乙的距离为:30*5+60+42*5=420m
第二:设甲乙俩地相距xm,
x/2-60=5*x/2/5*5/7,
解得x=420m
第三:设甲乙俩地相距xm,
x/2/5/x-60/5=7/5,
解得x=420m
第四:设客车的速度为xm/s,货车的速度为5/7x,
5x-60=5/7x*5,
解得x=42m/s,
甲乙的距离为2*5x=420m

阅读全文

与如何解六年级应用题的方法相关的资料

热点内容
anica迷你手机设置日期方法 浏览:409
铜线和铝线连接正确方法家用 浏览:118
德育如何掌握人际交往的方法 浏览:899
白兔的探视用说明方法怎么描写 浏览:111
中深孔采矿是什么采矿方法 浏览:229
oppo显示电量百分比在哪里设置方法 浏览:927
电话销售如何开发新客户的方法 浏览:543
默认短信在哪里设置方法 浏览:645
治疗脚跟骨刺的好方法 浏览:914
风管漏风检测方法 浏览:253
东风菱智车顶棉安装方法 浏览:571
什么方法能让婴儿去痰 浏览:258
羽毛球的使用方法 浏览:581
接球技术包括哪些技术方法 浏览:79
脸颊周围长痘解决方法 浏览:73
水电瓶充电视频教学方法 浏览:524
丙肝修复最佳方法 浏览:816
枣片的作用及食用方法 浏览:3
初中生如何复习的方法 浏览:306
听神经瘤治疗方法 浏览:293