❶ 小学算术技巧 小学阶段必须掌握的八个运算技巧
1、十位数相乘
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
口诀算法:1×1=1 2+4=6 2×4=8
答案:12×14=168
注:个位相乘,不够两位数要用0占位。个位相乘后是两位数,记得加在前一位!
这种方法需要孩子多次尝试,爸爸妈妈们要多鼓励孩子熟练掌握。如此一来,学习的时候孩子就可以快人一步!
2、百分比计算
计算百分比的时候,其实“%”就能抵消两个零。
比如计算“300的12%”时,只需要把“300”后面的两个“0”去掉,就可以划去“%”了,剩下就是“3x12=36”了,是不是很轻松。
当然,这种方法实际上原理也很简单。
如果两个数都有出现个位数是“0”,还有另一种方式:先将个位数取消,再把两个数字相乘,就可以得出答案了。
3、分数加减
一般来说,找出两分母的最小公倍数再计算。但其实只要在算式上画只蝴蝶就解决了。
把蝴蝶翅膀圈在一起的部分相乘写在触角里面,彼此相加就是答案的分子,再把分母彼此相乘,就是答案的分母。减法也是一样的方式,只要把触角里的数字改成相减即可。
蝴蝶法非常适合孩子爱玩的天性,当孩子看到蝴蝶后,潜意识会觉得学习是一件非常有意思的事,这对学习数学也能事半功倍。
4、分数与整数相乘
把分母和整数间连一条线,算出24是4的6倍,然后再把线连到分子3,用6乘以3,答案18就这么轻松算出来。
这也是一个非常实用而又简单的方法,希望孩子们能熟练掌握。
5、两位数与11相乘
任何二位数和11相乘,只要把十位数和个位数拆开,中间再插入十位数和个位数的总和,就可以轻松算出答案了。
6、数字大小比较
有些低年级的小学生在比数字大小时,容易用错“”这两个比较符号。
家长不妨让孩子记住,符号方向就像是鳄鱼嘴巴一样,朝哪边哪边大!
7、九九乘法表背诵口诀
事实上,很多孩子觉得被乘法口诀很难,今天就来帮助那些觉得难的孩子,让他们从此无忧。只要在十位数上从0写到9,个位数上从9到数回0,马上写出完整的表格。
8、两位数相乘
两位数的乘法,特别是90以上的互乘就更难了。其实有这样的简单技巧,比如97x96=9312来说,只要拿100减乘数与被乘数,把答案分别相乘与相加,把乘出来的答案摆在后面,用100减加出来的总和后摆在前面,答案竟然神奇得和传统算法一模一样。试试吧!
❷ 数学十大速算技巧
学习数学离不开计算,学生的计算能力是最基本的数学能力。那么你知道学好数学速算的 方法 有哪些吗?下面我给你分享数学十大速算技巧,欢迎阅读。
数学十大速算技巧
一、充分利用五大定律
教师要扎实开展好现行教材 四年级数学 下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。
二、巧妙运用“首同末合十”
利用“首同末合十”的方法来训练。“首同末合十”法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用“首同末合十”的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54×56=3024,81×89=7209。
三、留心“左右两数合并法”
任意的两位数乘上99或任意的三位数乘上999的速算法叫做“左右两数合并法”。
1.任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62×99=6138,48×99=4752。
2.任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781×999=780219,396×999=395604。
四、利用分数与除法的关系来巧算
在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,
24÷18×36÷12=(24÷18)×(36÷12)=24/18×36/12=4。
五、利用扩大缩小的规律进行简算
有些除法计算题直接计算比较繁琐,而且容易算错,利用“扩缩规律”进行合理的变形可以找到简便的解决方法。比如,
7÷25=(7×4)÷(25×4)=28÷100=0.28,
24÷125=(24×8)÷(125×8)=192÷1000=0.192。
六、数字颠倒的两、三位数减法巧算
形如73与37、185与581等的数称为“数字颠倒”的两、三位数,巧算方法为:
1.数字颠倒的两位数减法,可用两位数字中的大数减去小数,再乘以9,积就是它们的差。如73-37=(7-3)×9=36,82-28=(8-2)×9=54。
2.数字颠倒的三位数减法,可用三位数中最大数减去最小数,再乘以9,乘积分两边,中间填上9,就是它们的差。比如,581-158=(8-1)×9=63,所以851-158=693。
七、用“添零加半”的方法巧算
一个数乘上15的速算方法叫做“添零加半”。比如,26×15将26后面添0得260,再加上260的一半130,即260+130=390,所以26×15=360。
八、利用拆和法进行巧算
有些计算题,乍看起来都与运算定律没有关系,但经过变形后,直接地应用运算定律来进行计算。
九、用“两边拉中间加”的方法速算
任何数同11相乘,只要把原数的个位移到积的个位的位置,最高位移到积的最高位的位置,中间的数分别是个位上的数加十位上的数的和就是十位,十位上的数加百位上的和就是百位……如果相加的数的和满十要向前一位数进1。比如,124×11=1364,568×11=6248。
十、用“十加个减法”速算
“十加个减法”就是任何两位数加上9的和,可以把这个两位数变成十位加1个位减1的数,即36+9=45,17+9=26。这种计算技巧适合低年级的小学生。
很多学生计算结果不正确是由于马虎、粗心等不良习惯造成的。培养学生良好计算习惯时,教师要讲究训练形式,激发学生计算兴趣,寓教于乐,采用多样化形式训练。如用游戏、竞赛、卡片、小黑板视算、听算、限时口算、自编计算题、小 故事 等多种形式训练,教师要有耐心,有恒心,要统一办法与要求,要坚持不懈,抓到底。教师要引导学生养成良好的审题习惯、书写习惯和检验习惯。
魏德武速算
加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
乘法速算:乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。
速算嬗数|=(a-c)×d+(b+d-10)×c,,
速算嬗数‖=(a+b-10)×c+(d-c)×a,
速算嬗数Ⅲ=a×d-‘b’(补数)×c 。 更是独秀一枝,无与伦比。
(1),用第一种速算嬗数=(a-c)×d+(b+d-10)×c,适用于首同尾任意的任意二位数乘法速算。
比如 :26×28, 47×48,87×84-----等等,其嬗数一目了然分别等于“8”,“20 ”和“8”即可。
(2), 用第二种速算嬗数=(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算 ,
比如 :28×67, 47×98, 73×88----等等 ,其嬗数也同样可以一目了然分别等于“2”,“5 ”和“0”即可。(3), 用第三种速算嬗数=a×d-‘b’(补数)×c 适用于任意二位数的乘法速算。
猜你喜欢:
1. 国考行测之十大速算技巧
3. 行测资料分析速解技巧
4. 高中数学速算技巧
5. 数学速算的方法
❸ 小学数学速算技巧都有哪些方法
小学数学速算技巧都有哪些方法
小学数学速算技巧都有哪些方法,数学这门课程是很多的同学都很头疼的一门课程,好的开始就已经是成功的一半,因此计算能力从小学抓起,以下详细介绍小学数学速算技巧都有哪些方法。
1、速算要领
“头同,尾和10”算法口诀:头加1乘头,两尾乘积接后头(不足两位十补0)。是指个位数字之和是10,十位数字相同的两个两位数相乘时,则用第一个两位数十位上的数字加1,乘以第二个两个位数十位上的数字,其乘积构成该两个两位数乘积结果的前两位;而两数个位数字的乘积
则构成该两个两位数乘积的后两位(如果个位数的乘积不满10,则在其乘积结果前补0形成两位),再把两个乘积所形成的两个两位数顺序排列,就形成了“头同,尾合10”两位数的乘积结果。
2、算法分析
依据速算口诀,将其转化为科学计数法表示为:有(10a+b)与(10a+d)两个两位数相乘,且b+d=10,求证:(10a+b)×(10a+d)=100a(a+1)+bd。
证明:根据代数式(10a+b)×(10a+d)运算可得:(10a+b)×(10a+d)=10a×10a+10ad+10ab+bd=10a×(10a+b+d)+bd又∵b+d=10∴10a(10a+b+d)+bd=10a(10a+10)+bd=10a×10(a+1)+bd故证:(10a+b)×(10a+d)=100a(a+1)+bd对结果的.形象表述,即是这一算法的基本口诀:AB和AD两个两位数相乘,且B+D=10。其结果为四位数EFGH,其中EF=A(A+1),GH=BD。
二、“尾同,头和10”算法分析
速算要领
头乘头加尾,两尾乘积接后头(两尾乘积不足10时在十位上补0)。是指两个两位数相乘时,如果两数的个位数字相同,而十位数字之和是10,则以两个两位数十位上的数字相乘后加上任一两位数的个位之和
构成该两位数乘积结果的前两位;而用两位乘数个位上的乘积(如不满两位则在十位补0),则组成该两位数乘积结果的后两位,再把两个乘积所形成的两个两位数顺序排列就形成了“尾同,头合10”两位数的乘积结果。
2、算法分析依据速算口诀,将其转化为科学计数法则为:有(10b+a)与(10d+a)两个两位数,且b+d=10,求证:(10b+a)×(10d+a)=100(bd+a)+aa。
证明:根据代数式(10b+a)×(10d+a)运算可得:
(10b+a)×(10d+a)=10b×10d+10b×a+a×10d+aa=10b10d+10a(b+d)+aa
又∵b+d=10
∴10b10d+10a(b+d)+aa=100bd+100a+aa=100×(bd+a)+aa
对结果的形象表述,正是这一算法的基本口诀:BA和DA两个两位数相乘,且B+D=10。其结果为四位数EFGH,其中EF=BD+A,GH=AA。
三、“尾5,头和偶”算法分析
1、速算要领“尾5,头和偶”算法口诀:头乘头加头和折半,两尾乘积接后头。是指在两数相乘时,如果个位数字是5,十位数字之和是偶数,则其十位数之积与十位数和的一半之和,构成该两位数乘积的前两位,而两数个位数之积则构成了该两位数乘积的后两位,按顺序组合之后,就形成了该两位数的乘积。
2、算法分析
依据速算口诀,将其转化为科学计数法则为:尾数为5的两个两位数(10b+5)与(10d+5),且b与d之和为偶数,求证:(10b+5)×(10d+5)=100[bd+(b+d)/2]+5×5
证明:根据代数式(10b+5)×(10d+5)运算可得:
(10b+5)×(10d+5)=10b×10d+10b×5+5×10d+5×5=10b10d+50×(b+d)+5×5
又∵b+d=偶数
∴10b10d+50(b+d)+5×5=100bd+100(b+d)/2+5×5
故证:(10b+5)×(10d+5)=100[bd+(b+d)/2]+5×5
对结果的形象表述,正是这一算法的基本口诀:尾数为5的两位数B5和D5,且B+D=偶数。其乘积为四位数EFGH,其中EF=BD+(B+D)/2,GH=5×5。
1.十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:1×1=1
2+4=6
2×4=8
12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
例:23×27=?
解:2+1=3
2×3=6
3×7=21
23×27=621
注:个位相乘,不够两位数要用0占位。
3.第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4×4=16
7×4=28
37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
例:21×41=?
解:2×4=8
2+4=6
1×1=1
21×41=861
5.11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和5分别在首尾
11×23125=254375
注:和满十要进一。
拓展资料
数学速算法是指利用数与数之间的特殊关系进行较快的加减乘除运算的计算方法。数学速算法分为金华速算、魏德武速算、史丰收速算以及古人创造的“袖里吞金”四大类速算方法。
在数学中,算式(suàn shì)是指在进行数(或代数式)的计算时所列出的式子,包括数(或代替数的字母)和运算符号(四则运算、乘方、开方、阶乘、排列组合等)两部分。按照计算方法的不同,算式一般分为横式和竖式两种。与表达式不同,表达式是将同类型的数据(如常量、变量、函数等),用运算符号按一定的规则连接起来的、有意义的式子。
1、凑整法:根据运算定律和运算性质,把算式中能凑成整数(特别是整十数、整百数等)的部分合并或拆开,然后求得结果。
例如:8+4.1+1+5.9
=(8+1)+(4.1+5.9)
=10+10
=20
例如:1.25×18
=1.25×(10+8)
=1.25×10+1.25×8
=12.5+10
=22.5
例如:78×98
=78×(100-2)
=78×100-78×2
=7800-156
=7644
2、变化法:适当转变运算方法,即以加代减,以减代加,以乘代除,以除代乘;或改变运算顺序,或利用约分、加减进行化简等。
例如:4.7×0.25+7.3÷4
=(4.7+7.3)×0.25
=3
例如:3÷4-0.5÷0.7-0.3÷0.4+5÷7
=(3÷4-0.3÷0.4)+(5÷7-0.5÷0.7)
=0
简便计算的作用:
1、简便计算使得学生在短暂的时间内快速准确地算出正确答案。
2、简便运算与四则混合运算的算法是有区别的,它不按四则混合运算的运算顺序进行运算,而是运用各种运算性质和运算定律进行运算,是一种特别的运算方式。
3、“简便运算”的试题种类很多,一般可分为两大类:用“运算定律”和“运算性质”进行运算。
4、在数学当中运用简便计算方法可以很大程度节省做题的时间。
❹ 小学数学加减计算方法及技巧
小学数学加减计算方法和技巧:
1、在一个算式里只有同一级运算,就从左往右依次计算。能用简算的就用算,如用加法结合律和用减法的性质,都能使运算简便。
2、在有括号的算式里,先算括号里的再算括号外的。
3、计算时先观察题目的结构和特征,然后选用合理的方法去计算,计算时认真细心,做后检查。
❺ 小学速算方法与技巧是什么
1、凑整法:根据运算定律和运算性质,把算式中能凑成整数(特别是整十数、整百数等)的部分合并或拆开,然后求得结果。
例如:8+4.1+1+5.9
=(8+1)+(4.1+5.9)
=10+10
=20
例如:1.25×18
=1.25×(10+8)
=1.25×10+1.25×8
=12.5+10
=22.5
例如:78×98
=78×(100-2)
=78×100-78×2
=7800-156
=7644
2、变化法:适当转变运算方法,即以加代减,以减代加,以乘代除,以除代乘;或改变运算顺序,或利用约分、加减进行化简等。
例如:4.7×0.25+7.3÷4
=(4.7+7.3)×0.25
=3
例如:3÷4-0.5÷0.7-0.3÷0.4+5÷7
=(3÷4-0.3÷0.4)+(5÷7-0.5÷0.7)
=0
简便计算的作用:
1、简便计算使得学生在短暂的时间内快速准确地算出正确答案。
2、简便运算与四则混合运算的算法是有区别的,它不按四则混合运算的运算顺序进行运算,而是运用各种运算性质和运算定律进行运算,是一种特别的运算方式。
3、“简便运算”的试题种类很多,一般可分为两大类:用“运算定律”和“运算性质”进行运算。
4、在数学当中运用简便计算方法可以很大程度节省做题的时间。
❻ 小学数学简便运算的技巧和方法
小学数学的简便运算无外乎是几种,比如说凑整法
比如说各种结合律交换律等等
❼ 学生速算方法
怎样才能算得既快又准确呢?只要熟练掌握计算法则和运算顺序,根据题目本身的特点,使用合理、灵活的计算方法,化繁为简,化难为易,就能算得又快又准确。先为大家介绍5个速算技巧:
1. 方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例如:
23-11+7=23+7-11
4×14×5=4×5×14
10÷8×4=10×4÷8
2. 方法二:结合律法
加括号法
(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
例如:
23+19-9=23+(19-9)
33-6-4=33-(6+4)
(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
例如:
2×6÷3=2×(6÷3)
10÷2÷5=10÷(2×5)
去括号法
(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
例如:
17+(13-7)=17+13-7
23-(13-9)=23-13+9
23-(13+5)=23-13-5
(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)
例如:
1×(6÷2)=1×6÷2
24÷(3×2)=24÷3÷2
24÷(6÷3)=24÷6×3
3. 方法三:乘法分配律法
分配法
括号里是加或减运算,与另一个数相乘,注意分配。
例如:
8×(5+11)=8×5+8×11
提取公因式法
注意相同因数的提取。
例如:
9×8+9×2=9×(8+2)
4. 方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦,有借有还,再借不难嘛。
例如:
99+9=(100-1)+(10-1)
5. 方法五:拆分法
拆分法就是为了方便计算,把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例如:
32×125×25
=4×8×125×25
=(4×25)×(8×125)
=100×1000
要想让孩子熟练运用速算方法,需要通过持之以恒的练习,提升计算能力,这样,无论平时做作业还是考试都能游刃有余。
❽ 数学计算技巧方法有哪些
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
示例:
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
示例:
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
加法
a、整数和小数:相同数位对齐,从低位加起,满十进一。
b、同分母分数:分母不变分子相加。异分母分数:先通分,再相加。
减法
a、整数和小数:相同数位对齐,从低位减起,哪一位不够减退一当十再减。
b、同分母分数:分母不变,分子相减。分母分数:先通分,再相减。
乘法
a、整数和小数:用乘数每一位上的数去乘被乘数用哪一-位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同。
b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分结果要化简。
除法
a、整数和小数:除数有几位先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐。
b、甲数除以乙数(0除外)等于甲数除以乙数的倒数。
❾ 中学数学的计算技巧
怎样提高中学生的计算能力?在我看来,这要得意识到计算他不是一个简单的求值过程。下面是我为大家整理的关于中学数学的计算技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1中学数学的计算技巧
加强简便的运算训练,提高运算的整体把握能力,要充分运用已学过的运算定律、性质、合理改变运算顺序,使运算尽可能简便、正确。教给学生一些巧算技巧。可以这样说,把握好这一点,是提高运算速度的最有效途径,因此,这一点很关键,教师在授课时必须进行适当的传授,把一些常用有效的技巧教给学生。
扩展数学视野,形成良好数感,学生应该具有对于数及其运算的敏捷感知与深入认识,这种素质称为数感; 类似地,对数学符号的感知和理解称为符号感.良好的数感和符号感是计算能力的基础,它们有助于学生分析问题情景,形成数学的直觉,有助于对运算结果进行估算,探讨显示在计算器或计算机上的运算结果的合理性.良好的数感和符号感有助于建立猜想,检查猜想的合理性.
帮助学生发展数感和符号感是发展学生计算能力的有效途径.初中 毕业 生应该理解基本运算,能够熟练的进行整数小数和分数的运算.而高中生更应该清楚地理解数系的概念,了解不同数系之间的联系与区别,探讨一个数系的性质在另一个数系中是否仍然成立随着符号感的发展,学生能够发现有关数的一般性质.在美国,高中生还要学习与运用向量和矩阵,概率与统计.宽广的数学视野能够开拓学生解决问题的思路,从而发展学生的计算能力。
2中学数学计算的能力的培养
增强简算意识,提高计算的灵活性
简算是依据算式、数据的不同特点,利用运算定律、性质及数与数之间的特殊关系,使计算的过程简化、简洁的计算 方法 。简算是培养学生细心观察、认真分析、善于发现事物规律,训练学生思维深刻性、敏锐性、灵活性,提高计算效率,发展计算能力的重要手段。在小学数学里,加法交换律、结合律,乘法交换律、结合律与分配律,是学生进行简算的主要依据。
因此,在数学教学中我特别注意帮助学生深刻理解与熟练掌握这五条运算定律,及一些常用的简便计算方法,并经常组织学生进行不同形式的简算练习,让学生在计算实践中体验简算的意义、作用与必要性,强化学生自觉运用简算方法的意识,提高学生计算的灵活性和正确率。
培养学生的估算能力,强化估算意识
估算意识是指当主体面临有待解决的问题时,能主动尝试着从数学的角度运用数学的思想方法寻求解决问题的策略,懂得什么情况宜于估计而不比作准确的计算,并以正确的算理为基础,通过迅速合理的观察和思考,从众多信息中间寻求一批有用的或关键的数学信息,从而得到尽可能接近理想状态的结果。在数学教学中渗透和强化估算意识,可以进一步增强学生的学习兴趣,激活学生的思维,开阔学生的思路,提高学生综合运用多中方法处理、解决实际问题能力。
培养学生的估算意识我主要从两个方面入手。一方面,我在教学过程有意识地渗透估算思想,让学生用估算对数学规律进行猜想,用估算法检验解题思路,用估算法检验解题结果等,将估算思想贯穿教学始终,使学生在潜移默化中强化估算的意识。另一方面,让学生尽可能地运用估算解决一些与生活密切相连的问题,根据生活中的实际情况进行估算。如:装油问题(一个油桶装5千克油,有22千克油,需要几个油桶?)。通过这样的估算训练,让学生们在心理体验中感受这一知识的实际应用价值,从而主动探索估算方法,增强学生们的估算意识。
3中学数学计算能力的培养
夯实基础,强化基础知识掌握和口算训练
计算题的解答首先须考虑的是如何运用数学概念、运算法则或公式等,能否理解与掌握这些基础知识直接影响到学生计算能力的高低。如四则混合运算,就应当理解四则混合运算的法则,学生就应当了解到先乘除后加减,先计算括号的运算等相关基础知识,才能确保计算不出现差错。相对于低年级同学,高年级基础知识就更加丰富了,计算教学更应当注意不可急于求成,要从已学的基础知识整理出发,进行迁移训练。在教授异分母分数加法时,就应当从加法、分数单位意义出发。引导学生思考:分数单位不同,是否可以直接相加?进而指导学生运用通分知识、化异为同,将问题转化为已学习的同分母分数加法。
口算训练也大致如此。口算作为计算能力的基础,是仅依靠思维计算,快速得出计算结果的数学技能。口算在日常生活学习中有着广泛的应用范畴,对于学生 记忆力 、注意力及思维能力的培养均有直接作用。因此,在小学低年级学生的口算能力培养,尤其应坚持“重在平时,贵在坚持”的教学原则。如20以内的加减法、九九乘法表等都应达到脱口而出的程度,对于对于学生口算方法的长期熟悉和巩固,教师要适时地推动学生计算方法方面的熟练程度转化为为基本数学技能,增强计算教学的实效性。
自主探索,应在教师主导下经历算法探索过程
紧扣新旧知识间的内在关联,刺激正迁移的形成。将学生的思维有效地引到新旧知识的联结点上,可是学生更快地掌握新知识点,进入算理理解的新层次。如两位数相加的进位加法算术中,教师就可通过17+18=?12+9=?之类的例题,引导学生比较两位数相加与两位数加一位数之间的算法联系,即相同数位上数的加减,满十进一。当学生把握后新旧知识关联后,教师还应在掌控课堂的前提下,在对比分析两者联系后,引导学生认清本质,避免负迁移的发生。简单的如大数的口算,700+500=900,学生可根据已有知识 经验 得出7+5=12。这时教师就应强调7代表的数学内涵――7个百,这些问题在高年级学生看起来似乎很幼稚,但对于数学基础技能的培养却是不容忽视的。
算法交流。保证算法交流的实效性,关键在于使学生学会倾听、质疑、体验、比较与评价。具体教学中,教师应把握好互动教学中对话的“度”与其中蕴含的反馈信息,避免出现挤占课时的情况。我们可考虑从以下几句话着手: 如“你是怎么想的?”在鼓励学生展示个性化的算法时,教师还应就学生算法中所反映的思维水平,适度地调整教学进度与重难点教学设计。“大家对于现在所学的计算法则有什么 总结 吗?”教师要允许学生出现概括错误情况的出现,通过师生共同的补充、归纳,得出正确的计算法则,并在巩固练习使学生得到更深入地理解。如1000-234,教师就可在学生们的踊跃回答后,总结出一般规律:连续退位减法带0时,0点上退位点变为9,其他数字点相应减1。其中的关键点就在于学生对于算法规律的普遍掌握。
4数学计算能力的培养
突出重点。
如万以内的加减法,练习的重点是进位和退位。要牢记加进位数和减退位数,难点是连续进 位和退位;两三位数的乘法要练习第二、第三部分积的对位;小数的计算则注意小数点位置的处理,加、减、 除法强调小数点对齐,注意用"0"占位;简便运算则重点练习运用定律、性质和凑整。因此,在组织训练时必须 明确为什么练,练什么,要求达到什么程度,只有这样才能收到事半功倍的效果。
打好基础。
“要重视基本的口算训练。”口算既是笔算、估算和简算的基础,也是计算 能力的重要组成部分。因此要求学生在理解的基础上掌握口算方法,根据各年级对计算的要求,围绕重点,组 织一系列的有效训练,持之以恒,逐步达到熟练。凑整的训练一定要加强,如:74+26=100,63+37=100,252+ 748=1000,25×4=100,125×8=1000等,要教给学生迅速观察,判断、凑整的能力。这些要求到了中、高年级 也不应忽略。
同时要加强乘、加的口算训练,如两位数乘三位数176×47,当用7去乘被乘数 的十位时,还要加上6×7进上来的"4",所以"7×7+4"这类的口算必须在教学之前加以训练。除数是两位数,商 是二、三位数的除法,试商是难点,如果两位数乘以一位数的口算不过关,试商就困难。估算能力不强,试商也直接受到影响。到了高年级一些常用的口算,10-5.4= 4÷20= 3.5×200= 1.5-0.06= 0.75÷15= 0.4×0.8= 4×0.25= 0.36+1.54= 这些也要作为基本口算常抓不懈。3.掌握简便运算的方法。这是一种特殊形式的口算。简算的基础是运算性质和运算定律,因此,加强这方 面的训练是很重要的。在小学四则运算中,几种常用的简算方法学生必须掌握,从而达到提高计算速度的要求 。4.训练要有层次,由浅入深,由简单到复杂。训练形式要多样化,游戏、竞赛等更能激发学生训练的热情 ,维持训练的持久性,收到良好的效果。
中学数学的计算技巧相关 文章 :
1. 初中数学速算技巧
2. 初中数学成绩提升四大技巧及公式
3. 初中数学的解题技巧
4. 高中数学速算技巧
5. 数学十大速算技巧
6. 中学数学学习技巧总结
7. 初中数学学习的一般误区,数学学习十大技巧
8. 初中数学学习方法总结,数学的六大方法技巧!
9. 初中数学的五个学习方法
10. 初二学生数学学习中的计算训练方法