导航:首页 > 方法技巧 > 如何理解隐函数求导方法

如何理解隐函数求导方法

发布时间:2022-12-16 04:33:51

‘壹’ 隐函数如何求导

1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导;
2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x
的导数,也就是说,一定是链式求导;
3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法,
这三个法则可解决所有的求导;
4、然后解出dy/dx;
5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。

‘贰’ 隐函数求导公式、法则以及方法是什么

隐函数求导法则和复合函数求导相同。由xy²-e^xy+2=0,y²+2xyy′-e^xy(y+xy′)=0,y²+2xyy′-ye^xy-xy′e^xy=0,(2xy-xe^xy)y′=ye^xy-y²,所以y′=dy/dx=y(e^xy-y0/x(2y-e^xy)。对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有y'的一个方程,然后化简得到y'的表达式。

如果要求导数的函数是复合函数,或与其他函数的四则运算表达式,一般先进行四则运算,对于其中的复合函数求导时,对于需要的计算结果再单独使用复合函数求导法则进行计算,将计算得到的结果代入原来四则运算的计算公式,然后得到最终需要的结果。

‘叁’ 如何求隐函数的导数

隐函数存在定理主要讲述如何从二元函数F(x,y)的性质来判定由F(x,y)=0所确定的隐函数y=f(x)是存在的,并且,这个函数还具有某些特性。

在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。



隐函数导数的求解一般可以采用以下方法:

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导。

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数)。

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值。

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

‘肆’ 什么是隐函数求导

隐函数由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。

隐函数理论的基本问题就是:在适合原方程的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程确定一个惟一的函数y=(x),不仅单值连续,而且连续可微,其导数由;完全确定。隐函数存在定理就用于断定;就是这样的一个条件,不仅必要,而且充分。

(4)如何理解隐函数求导方法扩展阅读:

求导法则

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。

隐函数导数的求解一般可以采用以下方法:

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

‘伍’ 隐函数如何求导

如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。

有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。

若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。



(5)如何理解隐函数求导方法扩展阅读:

对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。

适合原方程的一个点的邻近范围内,在函数F(x,y)连续可微的前提下,什么样的附加条件能使得原方程确定一个惟一的函数y=(x),不仅单值连续,而且连续可微,其导数由完全确定。隐函数存在定理就用于断定就是这样的一个条件,不仅必要,而且充分。

阅读全文

与如何理解隐函数求导方法相关的资料

热点内容
起诉离婚的方法有哪些 浏览:431
用简便方法怎么算乘法 浏览:52
雪碧是怎么做的简单方法 浏览:464
如何快速找到野生蜜蜂巢方法 浏览:981
人文思辨类文章有哪些研究方法 浏览:55
笋壳斑去除的最佳方法 浏览:287
经络锻炼的好方法 浏览:888
黑面膜使用方法 浏览:432
视觉思维模式的创新的研究方法 浏览:888
用什么方法不腐烂 浏览:317
多元醇酯类化合物液相分析方法 浏览:304
举手之劳解决的方法 浏览:931
武汉石膏线安装方法 浏览:657
治疗手机卡顿闪退的方法 浏览:570
周岁的计算方法法律 浏览:667
投影仪安装方法图 浏览:524
迷宫的使用方法 浏览:758
气舍穴最佳取穴方法 浏览:575
风管连接可以采取哪些方法 浏览:454
红枣用什么方法做效果好 浏览:951