1. 高中数学立体几何秒杀技巧有哪些
所谓的解题技巧,就是以最短的路径,最精简的方法,得出答案。
第一、熟悉基本的概念,公理,定理,以及各种推论,最好多做不同类型的练习题,加深映象和理解,了解各定理和推论的各种变式以及各自的应用范围。
第二、几何是一门以一些已知关系求取一些未知关系之间的关系的学科,所以作辅助线就显得很重要,主要是直观,因为有时候关系多了记不住,就要把他标记下来,所以要多多思考怎样作辅助,需要什么辅助线才能达到目的。
第三、立体几何里面有一些特殊的关系式,比如正弦定理,余弦定理,海伦公式,二面角的四角公式等等,这些都是被证明了的恒等式,平时注意记忆和运用。
需知:
从代数的角度看,几何学从传统的解析几何发展成了更一般的一门理论——代数几何。传统代数几何就是研究多项式方程组的零点集合作为几何物体所具有的几何结构和性质——这种几何体叫做代数簇。
解析几何所研究的直线、圆锥曲线、球面、锥面等等都是其中的特例。稍微推广一些,就是代数曲线,特别是平面代数曲线,它相应于黎曼曲面。
2. 立体几何求线面角有什么方法技巧
求线面角方法如下:
(2)立体几何解题方法和技巧扩展阅读:
数学上,立体几何(Solid geometry)是3维欧氏空间的几何的传统名称—- 因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥, 锥台,球,棱柱,楔,瓶盖等等。
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
(参考资料:网络:立体几何)
3. 立体几何七大解题技巧
立体几何解题技巧如下:
1、平行、垂直位置关系的论证的策略
(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2、空间角的计算方法与技巧
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角
①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3、空间距离的计算方法与技巧
(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解。
4、熟记一些常用的小结论
诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
5、平面图形的翻折、立体图形的展开等一类问题
要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
6、与球有关的题型
只能应用“老方法”,求出球的半径即可。
7、立体几何读题
(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。
(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。
(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。
4. 立体几何题型及解题方法
题型:
1.立体几何证明
2.立体几何体积求解
3.几何体的外接球问题
立体几何解题方法:
5. 高考立体几何如何答得更规范有什么具体的技巧
实际上高考阅卷存在一个不可避免的问题,这个问题可以被我们利用。其实高考数学阅卷为了公平起见,现在一般实行分步赋分,把一个题的捷达过程分为几个关键步骤,每个步骤有相应的分值,这样就不至于出现只因为最后结果错误而一分不得的情况。这样来看,其实高考答题的时候,只需要你把每个步骤的关键词句写出来就能得分。至于过于细节的东西,大可适当放开。不只是对于立体几何,其他题目也可以这样处理。只要合理的把握关键步骤,就能得到分。当然,对于计算题,只要你最后结果计算正确,阅卷老师是不会去看你的步骤的。当然,你不要只是把定理条件摆上去,然后直接出结果,这个就过分了。而且你也大可不必担心结果出太快会有人怀疑你是抄袭,阅卷老师要是想把你打成作弊,他自己也要负很大责任,他也不想随便惹上一身麻烦的。这就是高考,学会利用,这是合理的利用。
6. 高中立体几何题型及解题方法是什么
题型:选择题,填空题,解答题和证明题。
解题方法:
一、线线平行的证明方法
1、利用平行四边形;
2、利用三角形或梯形的中位线;
3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。(线面平行的性质定理)
4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行的性质定理)
5、如果两条直线垂直于同一个平面,那么这两条直线平行。(线面垂直的性质定理)
6、平行于同一条直线的两个直线平行。
7、夹在两个平行平面之间的平行线段相等。
二、线面平行的证明方法
1、定义法:直线和平面没有公共点。
2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。(线面平行的判定定理)
3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。
4、反证法。
(6)立体几何解题方法和技巧扩展阅读
直线所成的角:设直线m、n的方向向量为a、b,m,n所成的角为a。
cosa=cos<a,b>=a*b/|a||b|
直线和平面所成的角:设直线m的方向向量为a,平面e的法向量为c。
设b为m和e所成的角,则b=π/2±<a,c>,sinb=|cos<a,c>|=|a*c|/|a||c|
7. 高中数学立体几何解题方法
在高考数学立体几何题型训练中,大家首先要把基本概念理解到位,然后配合题型训练更好地掌握模块精髓。下面是我为大家整理的关于高中数学立体几何解题 方法 ,希望对您有所帮助。欢迎大家阅读参考学习!
1高中数学立体几何解题方法
简单地说,《考试说明》就是对考什么、考多难、怎样考这三个问题的具体规定和解说。《教学大纲》则是编写教科书和进行教学的主要依据,也是检查和评定学生学业成绩、衡量教师教学质量的重要标准。我们可以结合上一年的高考数学评价 报告 ,对《考试说明》进行横向和纵向的分析,发现命题的变化规律。
2 学习计划
弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。
拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。
执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。回顾。对所得的结论进行验证,对解题方法进行 总结 。
3运算技巧
以“错”纠错,查漏补缺:这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是 反思 的过程。
以本为本,把握通性通法:近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡化特殊技巧”。就是说高考最重视的是具有普遍意义的方法和相关的知识。例如,将直线方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根方式、韦达定理、两点间距离公式等可以编制出很多精彩的试题。尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。
4几何公式
1.把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
3.正n边形的每个内角都等于(n-2)×180°/n
4.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
5.正n边形的面积sn=pnrn/2 p表示正n边形的周长
6.正三角形面积√3a/4 a表示边长
7.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
8.弧长计算公式:l=nπr/180
9.扇形面积公式:s扇形=nπr2/360=lr/2
10.内公切线长=d-(r-r)外公切线长=d-(r+r)
高中数学立体几何解题方法相关 文章 :
1. 高中数学立体几何如何学
2. 高二数学立体几何大题的八大解题技巧
3. 高中数学立体几何学习的方法
4. 高中数学立体几何核心考点与学习方法
5. 高考文科数学立体几何解题技巧
6. 高二数学立体几何知识点学习方法
7. 高三立体几何学习方法
8. 高中数学立体几何习题及答案
9. 高中数学大题的解题技巧及解题思想