导航:首页 > 方法技巧 > 幼升小分解式的方法与技巧

幼升小分解式的方法与技巧

发布时间:2022-12-06 21:56:38

㈠ 因式分解的方法与技巧口诀

因式分解并不难,分解方法要记全,各项若有公因式,首先提取莫迟缓,各项若无公因式,套用公式来试验。如果是个二项式,平方差公式要领先,如果是个三项式,完全平方想周全,以上方法都不行,运用分组看一看,面对二次三项式,十字相乘求方便,能分解的再分解,不能分解是答案。

把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

分解一般步骤

1、如果多项式的首项为负,应先提取负号;

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。

口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。

㈡ 因式分解的方法与技巧有哪些

把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,因式分解的方法有十字相乘法、提公因式法、待定系数法等。

十字相乘法

1.十字相乘法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式运算来进行因式分解。

2.用十字相乘法分解公因式的步骤:

(1)把二次项系数和常数项分别分解因数;

(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;

(3)确定合适的十字图并写出因式分解的结果;

(4)检验。

提公因式法

1.提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

2.提取公因式法分解因式的解题步骤

(1)提公因式。把各项中相同字母或因式的最低次幂的积作为公因式提出来;当系数为整数时,还要把它们的最大公约数也提出来,作为公因式的系数;当多项式首项符号为负时,还要提出负号

(2)用公因式分别去除多项式的每一项,把所得的商的代数和作为另一个因式,与公因式写成积的形式。

待定系数法

1.待定系数法:待定系数法是初中数学的一个重要方法。用待定系数法分解因式,就是先按已知条件把原式假设成若干个因式的连乘积,这些因式中的系数可先用字母表示,它们的值是待定的,由于这些因式的连乘积与原式恒等,然后根据恒等原理,建立待定系数的方程组,最后解方程组即可求出待定系数的值。

2.使用待定系数法解题的一般步骤是:

(1)确定所求问题含待定系数的一般解析式;

(2)根据恒等条件,列出一组含待定系数的方程;

(3)解方程或消去待定系数,从而使问题得到解决。

因式分解口诀

两式平方符号异,因式分解你别怕。

两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。

因式分解能与否,符号上面有文章。

同和异差先平方,还要加上正负号。

同正则正负就负,异则需添幂符号。

因式分解常用公式

1.平方差公式:a²-b²=(a+b)(a-b)。

2.完全平方公式:a²+2ab+b²=(a+b)²。

3.立方和公式:a³+b³=(a+b)(a²-ab+b²)。

4.立方差公式:a³-b³=(a-b)(a²+ab+b²)。

5.完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。

6.完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。

7.三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。

8.三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。

㈢ 因式分解的方法和技巧

因式分解的常用方法与技巧 田发银 因式分解是初中代数中一种重要的恒等变形,是处理数学家问题重要的手段和工具,有关的题目在中考和数学竞赛中比较常见。对于特殊的因式分解,除了考虑提公因式法、公式法、分组分解法、十字相乘法等基本方法外,还应根据多项式的具体结构特征,灵活选用一些特殊的方法,这样不仅可使问题化难为易,化繁为简,使复杂问题迎刃而解,而且有助于培养同学们的探索求新的习惯,提高同学们的数学思维能力。现将因式分解中几种比较常用的方法与技巧列举如下,供同学们参考。 一、巧拆项 在某些多项式的因式分解过程中,若将多项式的某一项(或几项)适当拆成几项的代数和,再用基本方法分解,会使问题化难为易,迎刃而解。 例1
因式分解: 。 解析:根据多项式的特点,把3
拆成,则

。 例2
因式分解:。
解析:根据多项式的特点,把
拆成,把11x
拆成,则

=
。 二、巧添项 在某些多项式的因式分解过程中,若在所给多项式中加、减相同的项,再用基本方法分解,则解法独特,新颖别致。 例3
因式分解: 。
解析:根据多项式的特点,在中添上两项,则有

。 三、巧换元 在某些多项式的因式分解过程中,通过换元,可把形式复杂的多项式变形为形式简单、易于分解的多项式,使问题化繁为简,迅速获解。 例4
因式分解: 。
解析:


,则。于是:
原式
。 四、展开巧组合 若一个多项式的某些项是积的形式,直接分解比较困难,则可展开重新组合,然后再用基本方法分解。 例5
因式分解: 。 解析:将多项式展开后再重新组合,分组分解。
例6
因式分解:。
解析:
。 五、巧用主元 对于含有两个或两个以上字母的多项式,若无法直接分解,可以其中一个字母为主元进行变形整理,从而使问题柳暗花明。 例7
因式分解: 。 解析:这是一个轮换对称多项式(指以a代替b、b代替c、c代替a后原式不变),不妨以a为主元进行整理:

。 从以上几例可以看出,因式分解题型较多,解法灵活,有较强的技巧性,若能根据多项式的具体结构特征,选用恰当的方法与技巧,不仅可以化难为易,迅速求解,而且有助于培养同学们的创新思想,有效地激发同学们的学习兴趣。
谢谢请给我一个好评

㈣ 因式分解的方法与技巧

因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、
提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、
分解因式x
-2x
-x(2003淮安市中考题)
x
-2x
-x=x(x
-2x-1)
2、
应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a
+4ab+4b
(2003南通市中考题)
解:a
+4ab+4b
=(a+2b)
3、
分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m
+5n-mn-5m
解:m
+5n-mn-5m=
m
-5m
-mn+5n
=
(m
-5m
)+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、
十字相乘法
对于mx
+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x
-19x-6
分析:
1
-3
7
2
2-21=-19
解:7x
-19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x
+3x-40
解x
+3x-40=x
+3x+(
)
-(
)
-40
=(x+
)
-(
)
=(x+
+
)(x+
-
)
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、
换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x
-x
-6x
-x+2
解:2x
-x
-6x
-x+2=2(x
+1)-x(x
+1)-6x
=x
[2(x
+
)-(x+
)-6
令y=x+
,
x
[2(x
+
)-(x+
)-6
=
x
[2(y
-2)-y-6]
=
x
(2y
-y-10)
=x
(y+2)(2y-5)
=x
(x+
+2)(2x+
-5)
=
(x
+2x+1)
(2x
-5x+2)
=(x+1)
(2x-1)(x-2)
8、
求根法
令多项式f(x)=0,求出其根为x
,x
,x
,……x
,则多项式可因式分解为f(x)=(x-x
)(x-x
)(x-x
)……(x-x
)
例8、分解因式2x
+7x
-2x
-13x+6
解:令f(x)=2x
+7x
-2x
-13x+6=0
通过综合除法可知,f(x)=0根为
,-3,-2,1
则2x
+7x
-2x
-13x+6=(2x-1)(x+3)(x+2)(x-1)
9、
图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x
,x
,x
,……x
,则多项式可因式分解为f(x)=
f(x)=(x-x
)(x-x
)(x-x
)……(x-x
)
例9、因式分解x
+2x
-5x-6
解:令y=
x
+2x
-5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x
+2x
-5x-6=(x+1)(x+3)(x-2)
10、
主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a
(b-c)+b
(c-a)+c
(a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a
(b-c)+b
(c-a)+c
(a-b)=a
(b-c)-a(b
-c
)+(b
c-c
b)
=(b-c)
[a
-a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、
利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x
+9x
+23x+15
解:令x=2,则x
+9x
+23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x
+9x
+23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x
-x
-5x
-6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x
-x
-5x
-6x-4=(x
+ax+b)(x
+cx+d)
=
x
+(a+c)x
+(ac+b+d)x
+(ad+bc)x+bd
所以
解得
则x
-x
-5x
-6x-4
=(x
+x+1)(x
-2x-4)

㈤ 幼儿园数学分解法怎么

幼儿园数学分解教法如下。

1、利用食物分解。

2、如一篮水果有5个,一个放在一个盘子里,另外四个放在一个盘子里。

3、让孩子发现5能分成1和4。

4、同样1和4能组成5。

5、还有5能分成2和3,3和2,4和1。

(5)幼升小分解式的方法与技巧扩展阅读

破十法:是一种计算方法,即:当个位不够减时,就用10减去减数,剩下的数和个位上的数相加,即破十法。

破十法口诀

十几减九,几加一;十几减七,几加三;十几减五,几加五;十几减三,几加七;十几减八,几加二;十几减六,几加四;十几减四,几加六;十几减二,几加八。

㈥ 因式分解的方法与技巧

1、如果多项式的首项为负,应先提取负号;

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。

2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。

(6)幼升小分解式的方法与技巧扩展阅读

1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。

2、分解因式的结果必须是以乘积的形式表示。

3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。

4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;

5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;

6、括号内的首项系数一般为正;

7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);

㈦ 分解因式的方法与技巧是什么

1、提公因式法

几个多项式的各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

2、公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

注意事项

1、等式左边必须是多项式;

2、分解因式的结果必须是以乘积的形式表示;

3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数;

4、分解因式必须分解到每个多项式因式都不能再分解为止。

㈧ 因式分解的方法与技巧

导语:因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用。是解决许多数学问题的有力工具。把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

因式分解的方法与技巧

1、 提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x3 -2x 2-x

x3 -2x2 -x=x(x2 -2x-1)

2、 应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a2 +4ab+4b2

解:a2 +4ab+4b2 =(a+2b)2

3、 分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m2 +5n-mn-5m

解:m2 +5n-mn-5m= m 2-5m -mn+5n

= (m2 -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

对于mx2 +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x2 -19x-6

分析: 1 ×7=7, 2×(-3)=-6

1×2+7×(-3)=-19

解:7x2 -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x2 +6x-40

解x2 +6x-40=x2 +6x+( 9) -(9 ) -40

=(x+ 3)2 -(7 ) 2

=[(x+3)+7]*[(x+3) – 7]

=(x+10)(x-4)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、 换元法

有时在分解因式时,可以选择多项式中的.相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x4 –x3 -6x2 -x+2(也叫相反式,在这里以二次项系数为中心对称项的系数是相等的,如四次项与常数项对称,系数相等,解法也是把对称项结合在一起)

解:2x 4–x3 -6x2 -x+2=2(x4 +1)-x(x2 +1)-6x2

=x2 {2[x2 + ()2]-(x+ )-6}

令y=x+ ,

x2 {2[x2 +( )2]-(x+)-6}

= x2 [2(y2 -2)-y-6]

= x2 (2y2 -y-10)

=x 2(y+2)(2y-5)

=x2 (x+ +2)(2x+ -5)

= (x2 +2x+1) (2x2 -5x+2)

=(x+1)2 (2x-1)(x-2)

8、 求根法

令多项式f(x)=0,求出其根为x1,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x 2)(x-x3 )……(x-xn ) (一般情况下是试根法,并且一般试-3,-2,-1,0,1,2,3这些数是不是方程的根)

例8、分解因式2x4 +7x3 -2x2 -13x+6

解:令f(x)=2x4 +7x3 -2x2 -13x+6=0

通过综合除法可知,f(x)=0根为 ,-3,-2,1 ,

则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、 图象法(这种方法在以后学函数的时候会用到。现在只是作为了解内容,它和第八种方法是类似的)

令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为

f(x)= f(x)=(x-x1 )(x-x2 )(x-x3)……(x-xn )

例9、因式分解x3 +2x2 -5x-6

解:令y= x3 +2x2 -5x-6

作出其图象,可知与x轴交点为-3,-1,2

则x3 +2x 2-5x-6=(x+1)(x+3)(x-2)

10、 主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a2 (b-c)+b2 (c-a)+c2 (a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a2 (b-c)+b2 (c-a)+c2 (a-b)=a2 (b-c)-a(b2 -c 2)+bc(b-c)

=(b-c) [a2 -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、 利用特殊值法

将2或10(或其它数)代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。例11、分解因式x 3+9x2 +23x+15

解:令x=2,则x3 +9x 2+23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x3 +9x2 +23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x4 –x3 -5x2 -6x-4

如果已知道这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x4 –x3 -5x2 -6x-4=(x2 +ax+b)(x2 +cx+d)

= x4 +(a+c)x3 +(ac+b+d)x2 +(ad+bc)x+bd

从而a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4

所以 解得

则x4 –x3 -5x2 -6x-4 =(x 2+x+1)(x2 -2x-4)。

因式分解应该注意哪些问题?

一、要注意到“1”的存在而避免漏项

在提取公因式时,多数同学易忘记观察被分解多项式的项数是多少,更没有理解因式分解与乘法运算之间的关系,而在分解因式时应注意到“1”在这个多项式分解中的存在和作用。

例1分解因式23x+5xy+x=x(3x+5y)

错解: 23x+5xy+x=x(3x+5y),这样就漏了“x”这一项,提出“x”后应由“1”来补其位。 正解: 23x+5xy+x=x(3x+5y+1)

二、提取公因式时要注意符号的变化

牢记在有理数的乘法运算中“括号前是负号,去括号时括号里的各项都要变号”这一运算律,而因式分解与乘法运算之间互为逆变形,首相为负号应提取负号,但加括号并且括号里的各项都要变号。

例2分解因式2-10x+10xy.

错解: 2-10x+10xy=-10x(x+y),错在括号里没有变号。

正解: 2-10x+10xy=-10x(x-y).

三、要注意整体与个体之间的关系

在公式22a-b=(a+b)(a-b) ,222a+2ab+b=(a+b), 222a-2ab+b=(a-b)中,a、b代表符合这一特点的整个代数式里的整个因式,而不只代表这个代数式里的某一个因式。如216x是表示2(4x),而不是216x.因此再分解因式时要注意整体与个体之间的关系。

例3分解因式29x-1

错解: 29x-1=(9x+1)(9x-1),错在29x-1只能写为2(3x)不能写为29x. 正解: 29x-1=(3x+1)(3x-1).

四、要注意分解完整

因式分解即是把一个多项式分解为几个不能再分解的因式的乘积形式,因式分解需要分解到不能再分解为止。

例4分解因式4216x-72x+81

错解: 4216x-72x+81=22(4x-9),很多学生就分解到此为止,但没有注意到24x-9还可以分解。因为24x可以写成2(2x),9可以写成2(3),故24x-9符合平方差公式的特点应继续分解。

正解: 4216x-72x+81=22(4x-9)=2[(2x+3)(2x-3)]=22(2x+3)(2x-3) 例5分解因式4x-9 (在实数范围内)

错解: 4x-9=22(x+3)(x-3),错在许多学生还未注意到2(x-3)中的“3”还可以写为

2(3),因此2(x-3)写为2x-2(3),这就符合平方差公式的特点应继续分解。

正解: 4x-9=22(x+3)(x-3)=2(x+3)(x+3)(x-3) 五、应注意因式与整式乘法的关系

因式分解是要把一个多项式分解为几个整式的乘积形式;然而整式的乘法是要把几个正式的乘积形式化成一个多项式的形式。 例6分解因式4224a-2ab+b.

错解: 4224a-2ab+b=222(a-b)=22(a+b)(a-b)=2222(a+2ab+b)(a-2ab+b),错在又把22(a+b)(a-b)化为了2222(a+2ab+b)(a-2ab+b)

正解: 4224a-2ab+b=222(a-b)=22(a+b)(a-b)。

㈨ 幼儿分解是怎么教的

1、幼儿园中班就学习10以内的分解,您只需要找十根小木棍或者同样的东西10个就可以了。
2、首先从2的分解开始来,拿两个一样的东西让幼儿数出来东西的数量,再把东西分开放,幼儿可以很清晰直观的看出来,2个东西是可以被分成1个和1个的,这就是2可以分解成1和1,然后反过来告诉幼儿1和1可以组成2,1+1=2。用实物摆放出来能更好的帮幼儿理解。
3、接下来就是3了,同样的拿出3个物品,一边放一个,剩下的放到另一边,也能很直观的看出一边是一个,另外一边是2个。于是3可以分解成1和2,1和2组成3,1+2=3。倒过来3先分解成2个,然后剩下的放另一边就是3的第二种分解方法,3还可以分解成2和1,2和1组成3,2+1=3。
4、每个数能被分解成比他本身数目少一种,也就是说2有一种分解,3有2种分解方法,4有3种分解方法,5有4种分解方法,以此类推。接下来我们分解数字4,首先还是左边放一个,其余的放到右边,不难数出右边有3个,4可以分解成1和3就完成了,再从右边拿走一个放到左边,就是4的第二种分解,我们看到两边这时一样多了,4可以分解成2和2,第三种便是再从右边拿走一个再放到左边,这时就可以看到4可以分解成3和1了。这时我们就总结出一个规律每个数字的左边都是从1开始的,右边是剩下的数量,然后每次都从右边拿走一个放到左边。
5、接下来让幼儿自己摆下5的分解吧,没有数字棒也没有关系的,玩具,棉签,水果,差不多的东西都是可以拿来分解的。家长在纸上先写出5和分解符号,再告诉幼儿每次都是先分成1和几,左边放一个,剩下的放右边,数一下右边应该是数字几呢?这样做分解幼儿就很快的理解分解的含义了,接下来5可以分解成2和几、3和几、4和几就可以很轻松的完成了。掌握了2-5的分解6-10的分解方法是一样的。

㈩ 求因式分解的所有方法和技巧

因式分解
因式分解(factorization)

因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.而在竞赛上,又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等.

⑴提公因式法
①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立
因式分解的十二种方法
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、 提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、 分解因式x -2x -x(2003淮安市中考题)
x -2x -x=x(x -2x-1)
2、 应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考题)
解:a +4ab+4b =(a+2b)
3、 分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 2
2-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x -x -6x -x+2
解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
解:令f(x)=2x +7x -2x -13x+6=0
通过综合除法可知,f(x)=0根为 ,-3,-2,1
则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
解:令y= x +2x -5x-6
作出其图象,见右图,与x轴交点为-3,-1,2
则x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x +9x +23x+15
解:令x=2,则x +9x +23x+15=8+36+46+15=105
将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值
则x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x -x -5x -6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

阅读全文

与幼升小分解式的方法与技巧相关的资料

热点内容
禽腺病毒检测方法 浏览:472
皮制手机壳清洗方法 浏览:156
学习英语翻译的方法和技巧 浏览:77
橘子的使用方法 浏览:977
四年级检测电路有两种方法分别是 浏览:935
安阻法的测量方法 浏览:143
儿童低烧怎么办简单的退烧方法 浏览:396
淘宝上的存钱方法怎么存 浏览:107
猫术后化脓最佳治疗方法 浏览:12
夹核桃的工具安装方法 浏览:17
二年级画小汽车简便方法 浏览:39
螺旋式led灯泡安装方法 浏览:220
酸奶的食用方法 浏览:139
神经性胃炎的治疗方法 浏览:258
人工整枝的主要技术方法有哪些 浏览:184
大田玉米收割方法视频 浏览:701
山东省教学方法 浏览:825
支付密码一般怎么设置在哪里设置方法 浏览:794
乳腺癌治疗方法及中药 浏览:554
老年人驼背有什么方法治疗 浏览:746