㈠ 判断函数的单调性的方法
判断函数单调性的方法
1.作差法(定义法).根据增函数、减函数的定义,利用作差法证明函数的单调性.其步骤有:⑴取值,⑵作差,⑶变形,⑷判号,⑸定性.其中,变形一步是难点,常用技巧有:整式型---因式分解、配方法,还有六项公式法.分式型---通分合并,化为商式.二次根式型---分子有理化.
具体:先在区间上取两个值,一般都是X1、X2 ,设X1>X2(或者X1<X2)
然后把X1、X2代进去f(x)解析式做差 ,也就是算 f(X1)-f(X2)
关键一步就是化简,一般化成乘或除的形式 ,这样好判号
比如 你设的是X1>X2这个条件 ,最后化简下来满足 f(X1)-f(X2)>0的话,它在区间上就是增函数 ,反之则为减函数.
2.图像法.利用函数图像的连续上升或下降的特点判别函数的单调性.
3.导数法.利用导函数的符号判别函数的单调性.f'(x)>0为单调递增,f'(x)
㈡ 函数的单调性的判断方法
1)找出函数的所有间断点和极值点
2)把函数以上面求出的点为界,分成一个一个子区间
3)考查各子区间上一阶导数的符号,为正则函数在该区间单调增,为负则在该区间单调减
4)若函数为一个个孤立的点,则只有比较函数增量与自变量增量的比值了。判断方法仿照 3) 。
㈢ 函数单调性的判断方法有哪些
函数单调性的判断方法有导数法、定义法、性质法和复合函数同增异减法。
1、导数法
首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、定义法
设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.
3、性质法
若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:
⑴ f(x)与f(x)+C(C为常数)具有相同的单调性;
⑵ f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
⑶当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
⑷当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;
4、复合函数同增异减法
对于复合函数y=f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t=g(x),则三个函数 y=f(t)、t=g(x)、y=f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
拓展资料:
1、奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;
2、互为反函数的两个函数有相同的单调性;
3、如果f(x)在区间D上是增(减)函数,那么f(x)在D的任一子区间上也是增(减)函数.