① 口算速算技巧
1、个位数是1。
速算口诀:头乘头,头加头,尾是1,头加头如果超过10要进位。
2、十位数是1。
速算口诀:头是1,尾加尾,尾乘尾,超过10要进位。
3、个位数都是9
速算口诀:头数各加1,相乘再乘10,减去相加数,最后再减1。
(1)疯狂李老师掌握口算方法与技巧扩展阅读:
1,加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀——“本位相加(针对进位数)减加补,前位相加多加一”就可以彻底解决任意位数从高位数到低位数的加法速算问题。
例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2,减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀——“本位相减(针对借位数)加减补,前位相减多减一”就可以彻底解决任意位数从高位数到低位数的减法速算问题。
例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
② 口算的技巧有哪些
口算是我们生活当中经常要运用到的一种数学方法,对于学生来说,主要是在小学阶段用得比较多。掌握一定的口算速算技巧,可以让数学学习更加有效,让孩子爱上学习数学。口算的速算技巧有很多,适合于不同的年龄阶段,我认为掌握以下几个方面的口算速算技巧基本上就可以满足日常学习、生活和工作需要了。
如果算式当中有两个数或者几个数相加可以得到十,那就可以通过调换数字顺序进行凑十计算。例如13+8+7,我们可以把8和7的位置进行调换,先计算13+7,然后再加8,即可得出最后的答案。这样做可以快速得出答案,提高运算效率和准确率。凑十法在减法的运算也是一样的,先把能够凑成10的减数相加,然后再用被减数减去即可得出答案。
就是将接近10、接近100和接近1000的数看成整数,然后再进行加减运算。例如在解答397+123这个题时,我们可以把397看成是400,然后用400+123可以得出答案为523,最后再减去3,即可得到最后的答案为520。在减法时同样也可以运用,运算方式也是一样。
把算式当中的数字连同前面的符号一起进行移位,然后再进行计算。这是小学数学口算计算当中经常可以用到的方法,例如3-4+5,很多小朋友并不知道怎么回答,认为3不能减4,实际上我们把5连同前面的+号一起移动,变换一下成为3+5-4,即可快速得出答案。
除此之外,口算速算方法还有补数法、拆分法、加括号法等具体的技巧,对于不同层次的学生而言只需要掌握一定的技巧即可。
③ 加减快速口算方法
第一讲 加法速算
一、凑整加法
凑整加法就是凑整加差法,先凑成整数后加差数,就能算的快。8+7=15 计算时先将8凑成10 8加2等于10 7减2等于5 10+5=15
如17+9=26 计算程序是17+3=20 9-3=6 20+6=26
二、补数加法
补数加法速度快,主要是没有逐位进位的麻烦。补数就是两个数的和为10 100 1000 等等。8+2=10 78+22=100 8是2的补数,2也是8的补数,78是22的补数,22也是78的补数。利用补数进行加法计算的方法是十位加1,个位减补。例如6+8=14 计算时在6的十位加上1,变成16,再从16中减去8的补数2就得14
如6+7=13 先6+10=16 后16-3=13
如27+8=35 27+10=37 37-2=35
如25+85=110 25+100=125 125-15=110
如867+898=1765 867+1000=1867 1867-102=1765
三、调换位置的加法
两个十位数互换位置,有速算方法是:十位加个位,和是一位和是双,和是两位相加排中央。例如61+16=77,计算程序是6+1=7 7是一位数,和是双,就是两个7,61+16=77 再如83+38=121 计算程序是8+3=11 11就是两位数,两位数相加1+1=2排中央,将2排在11中间,就得121。
第二讲 减法速算
一、两位减一位补数减法
两位数减一位数的补数减法是:十位减1,个位加补。如15-8=7,15减去10等于5,5加个位8的补数2等于7。
二、多位数补数减法
补数减法就是减1加补,三位减两位的方法:百位减1,十位加补,如268-89=179,计算程序是268减100等于168,168加89的补数11就等于179。
三、调换位置的减法
两个十位数互换位置,有速算方法:十位数减个位数,然后乘以9,就是差数。如86-68=18,计算程序是8-6=2,2乘以9等于18。
四、多位数连减法
多位数连减,采用补数加减数的方法达到速算。先找到被减数的补数,然后将所有的减数当成加数连加,再看和的补数是多少,和的补数就是所求之差数。举例说明:653-35-67-43-168=340,先找被减数653的补数,653的补数是347,然后连加减数347+35+67+43+168=660,660的补数为340,差数就得340。
④ 小学生口算技巧培养方法
如何培养小学生口算技能 翟小 韩桂芬 口算的正确、合理、迅速、反映了那一个数学素养的高低;口算是学生进一步学习笔算、估算和简算的重要基础,口算教学是训练学生思维能力和培养学生数感的重要手段,它是小学数学教学的一项基本任务。因此,教师要十分重视口算能力的培养。“实、勤、活、记、巧“五个字是笔者在教学中的点滴积累。 一、实字上打基础 首先,要想会算而且算得快,算的好,理解算理扎实、讲透,引导学生深入理解算理,领会计算方法,其次是低年级的口算达标特别重要。因此,教师一定要扎实推进,必须保证人人过关,达到熟练程度,为学生的后续学习奠定坚实的基础。 二、”勤“字上下功夫 口算能力的培养非一朝一夕之事,必须做到天天练、课课练,持之以恒,常抓不懈,坚持大部分课时中利用3-5分钟的时间进行口算训练,使常规教学常规化,切实有效的提高学生的口算水平,但在口算训练中要注意题量的适中。 三、“活”字上东脑筋 在口算训练过程中,方法单一会使学生厌烦的心理,所以训练的形式一定要灵活多样,当学生对口算练习产生兴趣时,他就会心情愉快、积极主动地参与学习,不会觉得口算练习是一种负担。例如可以通过这几种方式:学生相互出题;传统的扑克牌游戏中经典的算24点的游戏;采用小组竞赛的形式;限时记时口算;听算训练等等。 但无论何种竞赛或游戏,教师都要精心组织,恰当评价,让全班同学都积极主动参与,关注每个学生,让人人都参与练习的机会,努力激发学生的兴趣,让训练收到较好的效果。 四、“记”字上做文章 在有些计算内容具有广泛性、全面性、综合性。一些常见的运算在现实生活中也经常遇到,这些运算无特定的口算规律,必须通过强化记忆训练来解决。同时,还要牢记运算定律和性质,主要有加法交换律、结合律;乘法交换率、结合律、分配率,商不变性质等等。 一、巧字上深钻研 在计算中,有些运算有特定的口算规律,教师要引领学生深钻研、巧运算,找出窍门,提高口算技巧。 在日常计算中还有很多类似的能找到规律的题,教师不仅要留心,还要鼓励学生做一个有心人,发现窍门,提高巧算能力。 口算是项“细活”,容不得马马虎虎。口算技能的习得与学生的非智力因素也紧紧相关,这种技能绝非一日半年之功所能铸成。所以教师要持之以恒,坚持数年,最终使学生的口算技能得以养成 培养小学生的口算能力可以从以下几点入手: 一、重视培养学生说算理。要提高小学生的口算能力,首先要重视培养小学生会说算理,学生能说就能想,这样有利于理解算理,掌握口算方法,进而提高口算能力。如教学“9+6”的进位加法可以让学生讲出各种思考过程,9+1=10,10+5=15;4+6=10,10+5=15;10+6=16,16-1=15这样,学生说口算思路的过程也就是训练学生思维能力的过程,学生的思维能力提高了,就能促进他们更好的理解算理,口算能力也必然得到培养。 二、加强口算的基本训练。俗话说:“熟能生巧”,要提高口算能力,必须抓好口算的基本训练,做的多了,反应就快,正确率就高,反之,反应慢,准确率就低。口算训练中,要注意化繁为简,突出难点,对于基本的口算如:乘法口决,20以内加减法要反复训练,达到熟练,而20以内的进位加、退位减的口算是重点训练内容。 三、按一定速度要求训练。口算能力表现在正确、迅速上,正确是第一位,但速度也很重要,一定的速度能反映出口算能力的高低,同时也能间接地反映一个人思维是否敏捷、灵活。口算训练要有速度要求,但要在口算正确的前提下,训练学生口算的速度,两者要统一,事实上,一个算得快的学生,正确率一般也比较高,反之亦然,在教学中,教师就可以根据班级学生的情况,采取不同方式逐步提出速度要求,例如组织口算竞赛,瞬时提高等方式。口算能力还表现在持之以恒地训练。口算能力的培养不是一朝一夕可以达到的,需要在教学中长期懈地、有计划的进行,这就要求教师持之以恒地进行口算训练,例如:我们中韩小学一年级每天中午训练口算,当然前20名学生速度比较快,得到金星银星的同学出去玩儿了,我又会让剩下的20名学生比一比,谁是第一名,又出来十名,让最后剩下的10名再比一比谁是第一,这样,我就发现学生口算速度提高了,当然要结合所学内容,有目的的选择口算题目,这样即能训练学生当天的各种能力,又可以训练口算能力,从而达到一举两得的效果,总之,在教学时,凡需要计算的,尽量与口算训练相结合,能口算的坚持让学生口算,长期坚持不懈,必能提高口算能力,形成口算习惯。四、适当介绍一些口算方法。好的算法,是提高口算能力的催化剂,培养小学生口算能力,除了小学教材中已讲过的一些口算方法外,适当介绍一些其他口算方法,不仅可以提高学生的口算能力,也可以增加学生学习口算的兴趣,提高学习口算的积极性。
1、十位数是1的两位数相乘
乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
2、个位是1的两位数相乘
十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
3、十位相同个位不同的两位数相乘
被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
4、首位相同,两尾数和等于10的两位数相乘
十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。
5、首位相同,尾数和不等于10的两位数相乘
两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
⑥ 怎么口算快而且准确 怎么样让自己的口算能力加强在心里要怎么去算
谈谈小学口算教学的技巧
中学数学高级教师南海滨 计算在小学教学中占据着十分重要的地位,它是小学教学内容的重要组成部分,是学习数学的基础.新课标要求:应重视口算,提倡算法多样化,避免繁杂计算和程式化地叙述“算理”.
而我们过去在长期的教学过程中,仅在一年级时期,教学20以内加、减法时,利用教具对学生进行口算训练.以后的大多数教学,除教学乘法九九口诀外,基本都利用的是笔算教学,即竖式计算教学,很少进行口算教学的思维训练.新课标要求:使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展.口算不仅能培养学生的逻辑思维能力,还有利于培养学生的记忆力、注意力,提高学习数学兴趣.所以必须重视小学阶段的口算训练.下面,笔者就口算的一些方法、技巧总结如下,请教育同仁批评指正 一、20以内加减法的口算
1、加法
20以内进位加法思维训练的方法有许多:有点数法、接数法、凑十法,口决法,推导法、减补法等.要根据学生所处的文化环境、家庭背景和自身思维的不同,由学生自己动手实践、自主探索与合作交流来实现.这里重点介绍:减补法.
我们规定:两个可以凑成10的数是互为补数,1和9,2和8,3和7等.都是互为补数.
方法是:用第一个加数减去第二个加数的补数,再加上10 .比如:
9+4=13
思考方法:第二个加数的补数是6;第一个加数9减去4的补数6得3;3加上10,得13. 即 9+4 = 9 - 6+10 = 3+10 = 13
这样的思考途径,对于培养学生的逆向思维能力很有好处,但只能符合思维能力强的学生.教师可以根据情况引导.
2、减法
20以内退位减法是以20以内加法为基础的,方法有:想加法计算减法、破十法、分解减法后连减法、记小数数到大数、推导法、加补法等.这里重点介绍加补法:
方法是:用被减数个位上的数加上减数的补数,同时去掉十位上的“1”,比如:被减数
13 - 4 = 9
思维方法:被减数个位上的3不够减;减数4的补数是6;6加上被减数个位上的3,得9,同时去掉十位上的“1”.
二、两位数加减法口算:
两位数加减法这里重点介绍减补法和加补法,首先我们规定:两个和为100的数互为百补数.
1、加法
两位数加法有四种现象,即个位、十位都不进位的;个位进位十位不进位的;十位进位个位不进位的;个位十位都进位的.下面分别介绍:
(1)、个位十位都不进位的两位数加法,用数的组成法直接相加.
例:34 + 52 = 30 + 50 + 4 + 2 = 86
(2)个位进位十位不进位的两位数加法,思维方法是:
一个加数十位上的数字加上另一个加数十位上的数字再加“1”,得十位上的数字,个位用一个加数个位上的数字减去另一个加数个位上数字的百补数,得个位上的数字.
例:36+ 47 = 83
口算过程:十位上的数字是3 + 4 + 1=8
个位上的数字是6 - 3(3是7的十补数)=3
或 7 - 4(4是6的十补数)=3
所以:36+47十位数字是8,个位数字是3,等于83.
(3)十位进位个位不进位的两位数加法,思维方法是:
首先确定“百”位数字是“1”,然后用一个加数十位上的数字减去另一个加数十位上数字的十补数,得十位上的数字,个位上的数用数的组成法直接相加.
例:83 + 64 = 147
口算过程:百位是“1”.
十位数字是 8 - 4 = 4 或 6 - 2 = 4.
个位是 3 +4 = 7.
所以:83 + 64百位数字是1,十位数字是4,个位数字是7,等于147
(4)个位十位都进位的两位数加法,思维方法是:
首先确定百位数字是“1”,然后用一个加数减去另一个加数的百补数,得十位和个位上的数字.
例:86 + 59= 145
口算过程:百位是“1”.
十位和个位上的数字用 86 - 41(59的百补数)=45
或 59 - 14(86的百补数) =45.
所以:86+59百位是1,十位和个位是45,等于145.
2、退位减法
两位数减法我们重点探讨退位减法.
(1)两位数减两位数, 思维方法是:
首先用被减数十位数字减去减数十位数字再减“1”,是差的十位数字,然后用被减数个位数字加上减数个位数字的十补数,是差的个位数字.
例:83 - 26 = 57
口算过程:十位数字是 8 - 2 -1 = 5
个位数字是 3+4(4是6的十补数)=7
所以 83-26十位数字是5,个位数字是7,等于57.
(2)被减数是一百几十的退位减法,思维方法是:
首先确定百位是1-1=0 即这个数的差是几十几,然后用被减数十位和个位的数字加上减数十位和个位数字的百补数,就是差.
例132 - 67 = 65
口算过程:32+33(33是67的百补数)=65.
三、两位数乘法口算
一位数乘法口算就是口诀表,在讲清算理的基础上要求背会.这里重点介绍几种两位数乘法的特殊算法.
1、两个相同因数积的口算法;(平方口算法)
(1)、基本数与差数之和口算法:
基本数:这个数各位分别平方后,组成一个新的数称基本数.十位平方为基本数百位以上的数,个位平方为基本数十位和个位数,十位无数用零占位.
差数:这个数十位和个位的积再乘20称差数.
基本数 + 差数 = 这两个相同因数的积.
例1、13×13
基本数:百位:1×1=1
十位:用0占位
个位:3×3=9
所以基本数就是 109
差数:1×3×20=60
基本数 + 差数 = 109 + 60 = 169
所以13×13=169
例2、67×67
基本数:百位以上数字是 6×6=36
十位和个位数字是7×7=49
所以基本数是 3649
差数:6×7×20=840
基本数+差数=3649+840=4489
所以:67×67 = 4489
(2)三步到位法
思维过程:
第一步:把这个数个位平方.得出的数,个位作为积的个位,十位保留.
第二步:把这个数个位和十位相乘,再乘2,然后加上第一步保留的数,所得的数的个位就是积的十位数,十位保留.
第三步:把这个数十位平方,加上第二步保留的数,就是积的百位、千位数.
例1、24×24
第一步:4×4=16 “1”保留,“6”就是积的个位数.
第二步:4×2×2+1=17 “1”保留,“7”就是积的十位数.
第三步 :2×2+1=5 “ 5”就是积的百位数.
所以24×24=576
例二、37×37
第一步:7×7=49 "4"保留,"9",就是积的个位数.
第二步:3×7×2+4=46 "4"保留,"6",就是积的十位数.
第三步 :3×3+4=13 "13"就是积的百位和千位数字.
所以:37×37=1369
(3)、接近50两个相同因数积的口算
思维方法:比50大的两个相同数的积等于5乘5加上个位数字,再添上个位数字的平方,(必须占两位,十位无数用零占位):比50小的两个相同数的积,等于5乘5减去个位数字的十补数,再添上个位数字十补数的平方(必须占两位,十位无数用零占位).
例1、53×53
5×5+3=28 再添上3×3=9 (必须两位09) 等于2809
所以:53×53=2809
例2、58×58
5×5+8=33 再添上8×8=64 等于3364
所以:58×58=3364
例3、47×47
5×5-3(3是7的十补数)=22 再添上3×3=9 (必须两位09)
等于2209
所以:47×47=2209
(4)、末位是5的两个相同因数积的口算
思维方法:设这个数的十位数字为K,则这两个相同因数的积就是:K×(K+1)再添上5×5=25 或者 K×(K+1)×100+25
例 1、 35×35=3×(4+1)×100+25=1225
例2、75×75=7×(7+1)×100+25=5625
两个相同因数积的口算方法很多,这里就不一一介绍了.我们利用两个相同因数积的口算方法可以口算好多相近的两个数的积.举例如下:
例1、13×14
因为:13×13=169 再加13得182 所以 :13×14=182
或者14×14 因为:14×14=196 再减14 还 得182
例2、35×37
因为:35×35=1225 再加70(2×35)得1295
所以 35×37=1295
2、首尾有规律的数的口算
(1)首同尾合十(首同尾补)
思维方法:首数加“1”乘以首数,右边添上尾数的积(两位数),如积是一位数,十位用零占位.
例:76×74=(7+1)×7×100+6×4=5624
(2)尾同首合十(尾同首补)
思维方法:首数相乘加尾数,右边添上尾数的平方(两位数),如积是一位数,十位用零占位.
例:76×36=(7×3+6)×100+6×6=2736
(3)一同一合十(一个数两位数字相同,一个数两位数字互补)
思维方法:两个数的十位数字相乘,再加上相同数字,右边添上两尾数的积.如积是一位数,十位用零占位.
例:33×64=(3×6+3)×100+3×4=2112
以上三种方法,可以用一个公式计算即:
(头×头+同)×100 + 尾×尾
3、利用特殊数字相乘口算
有些数字很特殊,它们的积是有规律的.
(1)7乘3的倍数或3乘7的倍数
先看看下面的几个式子:
7×3=21 7×6=42 7×9=63
7×12=84 7×15=105 7×18=126.7×27=189
我们观察这几个式子被乘数都是7,乘数是3的倍数.是3的几倍,积的个位就是几,积的十位或者十位以上的数字始终是个位的2倍.
因此,我们可以说:7乘3的倍数,等于该倍数加该倍数的20倍.
果我们设这个倍数为N,用公式表示:7×3N=N+20N(N>0的正整如数)
例1、7×27=7×3×9=9+20×9=189
例2、7×57=7×3×19=19+20×19=398
这个结论3乘7的倍数也适用.我们用这个结论可以口算3的倍数和7的倍数的两个数相乘.
例3、14×15=7×2×3×5=7×3×10=10+20×10=210
例4、28×36=7×4×3×12=7×3×48=48+20×48=1008
(2)、17乘3的倍数或3乘17的倍数
17乘3的倍数,等于该倍数加该倍数的50倍.(3乘17的倍数也适用)
如果我们设这个倍数为N,用公式表示:17×3N=N+50N(N>0的正整数)
例1、17×21=17×3×7=7+50×7=357
例2、17×84=17×3×28=28+50×28=1428
例3、34×24=17×2×3×8=17×3×16=16+50×16=816
(3)、17乘13的倍数或13乘17的倍数
17乘13的倍数等于该倍数加该倍数的20倍,再加200倍.
如果我们设这个倍数为N,用公式表示:17×13N=N+20N+200N(N>0的正整数)
例1、17×78=17×13×6=6+20×6+200×6=1326
例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10
=2210
例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12
=2652
(4)43乘7的倍数或7乘43的倍数
43乘7的倍数等于该倍数加该倍数的300倍.
如果我们设这个倍数为N,用公式表示:43×7N=N+300N(N>0的正整数)
例1、43×28=43×7×4=4+300×4=1204
例2、43×84=43×7×12=12+300×12=3612
4、两个接近100的数相乘的口算
(1)超过100的两个数相乘
思维方法:先把一个因数加上另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积.
例1、103×104=(103+4)×100+3×4=10712
例2、112×107=(112+7)×100+12×7=11984
(2)不足100的两个数相乘
思维方法:先从一个因数中减去另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积.
例1、92×94=(92-6)×100+8×6=8648
或者:92×94=(94-8)×100+8×6=8648
(3)一个超过100,一个不足100的两个数相乘
思维方法:超过100的数减不足100的差,扩大100倍后,减去两个因数分别与100之差的积.
例1、104×97=(104-3)×100-4×3=10100-12=10088
口算的技巧太多了.以上仅介绍了部分特殊口算技巧,还有利用运算定律和运算性质可以口算;利用凑整法可以口算等等.要求我们教师要熟记和掌握这些方法,关键只有一种:最终近快的准确的口算出结果.
以上这些方法,都可以找到理论根据,并且可以证明之.新的课标要求:“要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动”,在这些活动中提高学生的学习兴趣.这些方法,不仅可以帮助学生掌握口算技巧,培养思维能力,也可以提高学生学习数学的兴趣.核心是我们教师不仅要掌握知识,探究知识,挖掘知识,而且要成为学习共同体的参与者、合作者、组织者、引导者、促进者.决不能死灌硬记,真正使学生“在思维能力、情感态度与价值观等多方面得到进步和发展.”
⑦ 二年级口算技巧与方法
1.多做多练,熟能生巧
“冰冻三尺,非一日之寒”,口算能力是孩子必备的基本功,我们应作出长计划,短安排,有目的、有计划、有步骤地进行教学和训练,体现出循序渐进的基本原则和按新的课程标准进行教学。
在日常生活中每天要坚持3—5分钟的口算训练,每天坚持练习1条口算题。开始是在家长的督促下完成,慢慢可放手使孩子形成习惯,自觉、自愿的完成。
2.保质、保量的训练
每次练习要记录完成1页所用的时间,做完后马上订正对错并分析错误原因。每做一次训练,都与上一次的速度比较一下,看看有没有进步,进步了,家长应当适当地赞扬一下小孩,说“真棒,有进步!”
孩子这时需要及时鼓励,正如在球场上拼搏的球员需要自己的队友当啦啦队一样,也可将他们优秀的练习张贴在家中醒目的地方作为激励,有时也可以给他们一个小小的奖品。
家长切不可一见自己的小孩的速度稍慢就急不可耐,说“真笨,怎么搞的!”如果当家长这样会对孩子有不利的影响,这是一件需要耐心和爱心才能做好的事情。
对有退步的孩子则可以和孩子一起分析退步的原因,然后再轻轻地摸着他们的头提出在以后口算中应该怎样去做,如果下次成绩提高了就及时表扬,鼓励他们继续努力,树立自信。
3.训练形式多样化
多做多练是前提,但孩子习惯对新鲜事物感兴趣,尤其喜欢在游戏中学习从中增长知识,如果长期单独某种练习,孩子是容易感到厌倦情绪的。
由此,口算练习要活泼、生动、多样化,在练习中可以采用的补充方式有:玩扑克牌(24点),听算,开火车,对口令,夺红旗,送信,找朋友,争擂台大王,定期检测等等。(要注意讲究实效、简便易行)
同时通过一些数学实践活动让孩子体会口算能力的培养对我们日常生活的重要性,(如买菜,逛超市等)。
4.理解算理,掌握巧算的方法
口算能力的提高,有赖于孩子对算理的理解,只有在理解的基上,才能收到举一反三的效果,大大提高口算的速度和准确性,并形成口算能力。为此要重视加强孩子对算理的理解。
例如:口算中常用的凑整法、凑十法、分解法,以及熟记一些常见的数据等。来看25×4=100 ,125×8=1000时,提醒孩子们能经常用它们作为口算的拐杖,有的时候还可以利用分解法将题目转换成有25×4=100,125×8=1000的形式。
让孩子将平时发现的巧算方法记下来,与同学分享。这样同时也培养了孩子口算的兴趣。
5.养成良好的计算习惯
养成良好的计算习惯,是提高孩子计算能力切实有效的办法。帮助孩子养成以下良好计算习,应该做到“一看、二想、三计算”的认真计算习惯。
计算是一件非常严肃认真的事情,来不得半点马虎,但恰恰有孩子没有良好学习习惯,拿到计算题后,没有看清数字,没有弄清运算顺序,就盲目的算起来。
例如:在计算6+4÷2这样一道简单的计算题时,由于孩子马虎,结果算成了5。如果在计算时,只要仔细一点,很容易看出这道题的运算顺序是先算除法再算加法,正确结果应该是8。
⑧ 小学三年级口算技巧和方法
方法一:带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b -c=a -c+b
a -b+c=a+c -b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b ÷c=a ÷c×b
a÷b ×c=a ×c÷b)
方法二:结合律法
(一)加括号法
1.在 加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
2.在 乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
(二)去括号法
1.在 加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要 变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加。)。
2.在 乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要 变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。)。
方法三:乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
例:8×(3+7)
=8×3+8×7
=24+56
=80
2.提取公因式
注意相同因数的提取。
例: 9×8+ 9×2
= 9×(8+2)
=9×10
=90
3.注意构造,让算式满足乘法分配律的条件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
方法四:凑整法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
方法五:拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如: 2和5,4和5,4和25,8和125等。分拆还要注意不要改变数的大小哦。
例: 32×125×25
= 4×8×125×25
=( 4×25)×( 8×125)
=100×1000
⑨ 快速口算技巧
提高口算速度的方法如下:
1、重视培养孩子说算理,要提高孩子的口算能力,要重视培养孩子会说算理,这样有利于理解算理,掌握口算方法,进而提高口算能力。
2、加强口算的基本训练,要提高口算能力,必须抓好口算的基本训练,每天坚持练习1条口算题。开始是在家长的督促下完成,慢慢可放手使孩子形成习惯,自觉、自愿的完成。
⑩ 口算的技巧有哪些
口算是我们生活当中经常要运用到的一种数学方法,对于学生来说,主要是在小学阶段用得比较多。掌握一定的口算速算技巧,可以让数学学习更加有效,让孩子爱上学习数学。口算的速算技巧有很多,适合于不同的年龄阶段,比如凑整法就是根据式题的特征,应用定律和性质使运算数据“凑整”。
1、加法凑整
例:32+15+8
原式=32+8+15=40+15=55
几个数相加,如果有几个数相加能凑成整十的数,可以调换加数的位置,再把几个数相加。
2、减法凑整
例:50-13-7
原式=50-(13+7)=50-20=30
从一个数里连续减去几个数,如果减数的和能凑成整十的数,可以把减数先加后再减。
3、乘法凑整
例1:25×14×4
原式=25×4×14=100×14=1400
先熟记25×4=100,125×8=1000;碰到25、125这样大的乘数先看看是否可以凑出4、8。
例2:25×32
原式=25×4×8=10×8=80
在熟记上面式子的基础上,把题目中的某数“拆开”分别与另一个数运算。
2.巧用乘法分配律
巧用乘法分配律格式为:m(a+b)=ma+mb
例1: 33×99
原式=33×(100-1)=3300-33=3267
例2: 666×666
原式=333×2×222×3=999×444=(1000-1)×444=444000-444=443556
3.找基准数法
找基准数法就是先把每个数与基准数的差累计起来,再加上基数与项数的积。
例:623+595+602+600+588
可选择600为基数,原式=600×5+23-5+2-12=3008
4.熟记常用数据
熟记1到20各自然数的平方数,可以有效提高做计算题的速度。