① 孩子不会加减乘除法,想要教会孩子加减乘除法该做哪些事情
孩子不会加减乘除法的原因,主要跟孩子对其概念理解不清晰,训练没有达到一定量,以及记忆力方面有关。建议家长可以做这三步骤帮助孩子快速认识加减乘除法:
② 怎样最快计算加减乘除
要快速计算加减法时,需要有很好的计算方法。
在快速计算加法的时候,要动动脑,像:348+95=348+100-5=448-5=443。这样的快速方法,用一句话来说就是“多加要减去”。
还有一种快速的加法是:392+103=392+100+3=492+3=495,这个快速计算的方法,要用一句话来说,就是“少加要加上”。
快速计算减法,也需要有方法,像:648-98=648-100+2=548+2=550。这样的加法计算,可以用一句话来说,就是“多减要加上”。
还有最后一种快速计算,是610-104=610-100-4=510-4=506,这是最后一种快速计算方法,用一句话来说,就是,“少减要减去”。
多减要加上;少减要减去;多加要减去;少加要加上。这四句话就是快速计算加减法的最好方法。
引言:作为一个家长,如果想教会孩子加减乘除,要掌握住校技巧。
④ 加减乘除的计算方法
先乘除,后加减,有括号的先算括号里的.
整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2、小数加、减法的计算法则:
1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3、分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则:
1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;
2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)
5、小数乘法法则:
1)按整数乘法的法则算出积;
2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
3)得数的小数部分末尾有0,一般要把0去掉。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则
1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;
2)除到被除数的哪一位,就在那一位上面写上商;
3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则:
1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;
2)然后按照除数是整数的小数除法来除
10、分数的除法法则:
1)用被除数的分子与除数的分母相乘作为分子;
2)用被除数的分母与除数的分子相乘作为分母
⑤ 加减乘除法速算技巧
加减乘除法速算技巧的操作,这个可以根据一定的运算定律来进行计算的,因为运用到比较简便的运算定律,可以快速并且直接地计算出结果
⑥ 连基本的加减乘除都不会怎么办
因此,现在必须加强这方面的训练。别气馁,加强练习,一定会提高的。
1、加减乘除运算法则、九九乘法表一定要掌握,这是提高运算能力的前提条件。
2、多做练习。重新练习课本的例题、习题,熟能生巧。
加减乘除是数学中相对简单容易的计算,相信通过一定的训练后,计算能力会提高的。
方法二:
数学是一门和日常生活息息相关的学科。计算又是数学的基础,所以如果计算很慢,只能说明基础差,甚至可以说20以内的计算也不扎实。这样的情况,一是每天练习基础题,比如10分钟50道题,争取全部都对熟能生巧。
再有,加强运算规则的理解和练习。文字题多读,能画出图最好。圈出关键字,注意单位是否统一,最重要的就是要读题目,认真读题目,看清题目要求,理解题意和知识考点。日常生活中,要留心观察,特别是长度单位、时间单位和计量单位。
⑦ 加减乘除(口算)有什么技巧呀
算,就是心记乘法竖式. 你在纸上怎么写的,就怎么记. 另外背熟乘法口诀.(这里的“背熟”意思是理清它们与各数相乘的规律) 如:93^2. =93*3+93*90. 这个数只有相同的9和3相乘,所以此式的积有3的进1,有0,就有1个9,有9就必有8,3与9必有6. 根据各个位数与各个位数的乘法关系,所以此式得8649. 有一种个位是5的平方算法: 15*15的,用第一个15的十位数的1加上1,就等于2,再乘另一个数的十位数,即2*1=2,答案就等于225 25*25的,同样(2+1)*2=6,答案就等于625 95*95的,(9+1)*9=90,答案就等于9025. 任何两位数乘以11,都可以用这个口诀:两头一拉,中间一加,满十进一 比如:12*11=132 13*11=143.23*11=253 37*11=407 1、两个相同因数积的口算法;(平方口算法) (1)、基本数与差数之和口算法: 基本数:这个数各位分别平方后,组成一个新的数称基本数。十位平方为基本数百位以上的数,个位平方为基本数十位和个位数,十位无数用零占位。 差数:这个数十位和个位的积再乘20称差数。 基本数 + 差数 = 这两个相同因数的积。 例1、13×13 基本数:百位:1×1=1 十位:用0占位 个位:3×3=9 所以基本数就是 109 差数:1×3×20=60 基本数 + 差数 = 109 + 60 = 169 所以13×13=169 例2、67×67 基本数:百位以上数字是 6×6=36 十位和个位数字是7×7=49 所以基本数是 3649 差数:6×7×20=840 基本数+差数=3649+840=4489 所以:67×67 = 4489 (2)三步到位法 思维过程: 第一步:把这个数个位平方。得出的数,个位作为积的个位,十位保留。 第二步:把这个数个位和十位相乘,再乘2,然后加上第一步保留的数,所得的数的个位就是积的十位数,十位保留。 第三步:把这个数十位平方,加上第二步保留的数,就是积的百位、千位数。 例1、24×24 第一步:4×4=16 “1”保留,“6”就是积的个位数。 第二步:4×2×2+1=17 “1”保留,“7”就是积的十位数。 第三步 :2×2+1=5 “ 5”就是积的百位数. 所以24×24=576 例二、37×37 第一步:7×7=49 "4"保留,"9",就是积的个位数。 第二步:3×7×2+4=46 "4"保留,"6",就是积的十位数。 第三步 :3×3+4=13 "13"就是积的百位和千位数字。 所以:37×37=1369 (3)、接近50两个相同因数积的口算 思维方法:比50大的两个相同数的积等于5乘5加上个位数字,再添上个位数字的平方,(必须占两位,十位无数用零占位):比50小的两个相同数的积,等于5乘5减去个位数字的十补数,再添上个位数字十补数的平方(必须占两位,十位无数用零占位)。 例1、53×53 5×5+3=28 再添上3×3=9 (必须两位09) 等于2809 所以:53×53=2809 例2、58×58 5×5+8=33 再添上8×8=64 等于3364 所以:58×58=3364 例3、47×47 5×5-3(3是7的十补数)=22 再添上3×3=9 (必须两位09) 等于2209 所以:47×47=2209 (4)、末位是5的两个相同因数积的口算 思维方法:设这个数的十位数字为K,则这两个相同因数的积就是:K×(K+1)再添上5×5=25 或者 K×(K+1)×100+25 例1、 35×35=3×(4+1)×100+25=1225 例2、75×75=7×(7+1)×100+25=5625 两个相同因数积的口算方法很多,这里就不一一介绍了。我们利用两个相同因数积的口算方法可以口算好多相近的两个数的积。举例如下: 例1、13×14 因为:13×13=169 再加13得182 所以 :13×14=182 或者14×14 因为:14×14=196 再减14 还得182 例2、35×37 因为:35×35=1225 再加70(2×35)得1295 所以35×37=1295 2、首尾有规律的数的口算 (1)首同尾合十(首同尾补) 思维方法:首数加“1”乘以首数,右边添上尾数的积(两位数),如积是一位数,十位用零占位。 例:76×74=(7+1)×7×100+6×4=5624 (2)尾同首合十(尾同首补) 思维方法:首数相乘加尾数,右边添上尾数的平方(两位数),如积是一位数,十位用零占位。 例:76×36=(7×3+6)×100+6×6=2736 (3)一同一合十(一个数两位数字相同,一个数两位数字互补) 思维方法:两个数的十位数字相乘,再加上相同数字,右边添上两尾数的积。如积是一位数,十位用零占位。 例:33×64=(3×6+3)×100+3×4=2112 以上三种方法,可以用一个公式计算即: (头×头+同)×100 + 尾×尾 3、利用特殊数字相乘口算 有些数字很特殊,它们的积是有规律的。 (1)7乘3的倍数或3乘7的倍数 先看看下面的几个式子: 7×3=21 7×6=42 7×9=63 7×12=84 7×15=105 7×18=126.7×27=189 我们观察这几个式子被乘数都是7,乘数是3的倍数.是3的几倍,积的个位就是几,积的十位或者十位以上的数字始终是个位的2倍. 因此,我们可以说:7乘3的倍数,等于该倍数加该倍数的20倍. 果我们设这个倍数为N,用公式表示:7×3N=N+20N(N>0的正整如数) 例1、7×27=7×3×9=9+20×9=189 例2、7×57=7×3×19=19+20×19=398 这个结论3乘7的倍数也适用.我们用这个结论可以口算3的倍数和7的倍数的两个数相乘. 例3、14×15=7×2×3×5=7×3×10=10+20×10=210 例4、28×36=7×4×3×12=7×3×48=48+20×48=1008 (2)、17乘3的倍数或3乘17的倍数 17乘3的倍数,等于该倍数加该倍数的50倍.(3乘17的倍数也适用) 如果我们设这个倍数为N,用公式表示:17×3N=N+50N(N>0的正整数) 例1、17×21=17×3×7=7+50×7=357 例2、17×84=17×3×28=28+50×28=1428 例3、34×24=17×2×3×8=17×3×16=16+50×16=816 (3)、17乘13的倍数或13乘17的倍数 17乘13的倍数等于该倍数加该倍数的20倍,再加200倍。 如果我们设这个倍数为N,用公式表示:17×13N=N+20N+200N(N>0的正整数) 例1、17×78=17×13×6=6+20×6+200×6=1326 例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10 =2210 例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12 =2652 (4)43乘7的倍数或7乘43的倍数 43乘7的倍数等于该倍数加该倍数的300倍。 如果我们设这个倍数为N,用公式表示:43×7N=N+300N(N>0的正整数) 例1、43×28=43×7×4=4+300×4=1204 例2、43×84=43×7×12=12+300×12=3612 4、两个接近100的数相乘的口算 (1)超过100的两个数相乘 思维方法:先把一个因数加上另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积。 例1、103×104=(103+4)×100+3×4=10712 例2、112×107=(112+7)×100+12×7=11984 (2)不足100的两个数相乘 思维方法:先从一个因数中减去另一个因数与100的差,然后在所得的结果后面添上两个因数分别与100之差的积。 例1、92×94=(92-6)×100+8×6=8648 或者:92×94=(94-8)×100+8×6=8648 (3)一个超过100,一个不足100的两个数相乘 思维方法:超过100的数减不足100的差,扩大100倍后,减去两个因数分别与100之差的积。 例1、104×97=(104-3)×100-4×3=10100-12=10088 口算的技巧太多了。以上仅介绍了部分特殊口算技巧,还有利用运算定律和运算性质可以口算;利用凑整法可以口算等等。要求我们教师要熟记和掌握这些方法,关键只有一种:最终近快的准确的口算出结果。
⑧ 如何学会加减乘除
1,乘除法:
在熟记乘法口诀的基础上多加练习
2,加减法:要多练
习进位和退位题
总之多多练习达到熟练生巧.速度就会加快.
⑨ 加减乘除的简便运算方法
加减乘除的简便计算方法:
复习重点:
1、小数加、减的计算方法及应用加法运算律进行简便计算。
2、小数乘(除)以整数的计算方法、小数点位置移动引起小数大小变化的规律
3、小数乘(除)以小数的计算方法、求积(商)的近似值、应用乘法运算律进行简便计算。
复习难点:
1、应用加法运算律进行简便计算。
2、
小数点位置移动引起小数大小变化的规律。
3、
求积(商)的近似值和应用乘法运算律进行简便计算
教学过程:
一:知识梳理:
小数四则混合运算和简便计算。
(1)小数加减法要相同数位上的数对齐。小数乘法末尾对齐。
(2)小数乘法:先按整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。积的末尾有0要化简。
(3)小数除以整数:除到哪一位,商就写在哪一位上,商的小数点和被除数的小数点对齐,商的整数部分不够商1,个位上就写0,如果除到被除数的末尾还有余数,添0再继续除。小数除以小数,先把除数变成整数,除数的小数点右移几位,被除数的小数点也向右移动相同的位数,再按除数是整数的小数除法计算。
(4)循环小数、近似数(四舍五入法,进一法,去尾法)。
(5)简便计算:运算律的运用和一些特殊的运算方法,(去括号的时候如果括号前面是减号和除号要注意变符号,例如:
a÷(b×c)=a÷b÷c,a-b-c=a-(b+c),a-(b-c)=a-b+c)
⑩ 分数加减乘除法速算技巧是什么
1、同分母的分数相加减,分母不变,分子相加减,同分母分数乘法运算是分母分子同时相乘,分数的除法运算方法是前一个分数乘以后一个分数的倒数。
2、异分母分数相加减,先通分,再按照同分母分数的方法相加减,乘除与同分母分数方法相同。
3、分数乘整数,分母不变,分子乘整数,最后能约分的要约分。分数乘分数,用分子乘分子,用分母乘分母,最后能约分的要约分。
4、分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后能约分的要约分。分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后能约分的要约分。
5、分数除以分数,等于被除数乘除数的倒数,最后能约分的要约分。