1. 鸡兔同笼简便算法
鸡兔同笼问题的简便解法:
兔几只=脚数÷2-总数【仅限于2脚和4脚】
兔几只=(总脚数-总数×鸡的脚数)÷(兔的脚数-鸡的脚数)【此公式万能】
鸡几只=总数×2-脚数÷2【仅限于2脚和4脚】
鸡几只=(兔的脚数×总数-总脚数)÷(兔的脚数-鸡的脚数)【此公式万能】
----------------------------------------------------------------------
除用公式外,剩下的方法就是列方程了
2. 鸡兔同笼最简单的方法
鸡兔同笼最简单的方法:假设法
在解决“鸡兔同笼”问题时,最常见的方法就是假设法,而在孩子的学习过程中,也会喜欢使用这种简便而又快捷的方法。
“鸡兔同笼”问题的解法有很多,孩子要学会的不仅仅只是解决“鸡兔同笼”问题的方法,更要学会在解决“鸡兔同笼”问题的同时,融会贯通,建立起属于自己的数学思维逻辑,让高年级更为复杂的数学学习变得轻松。
3. 鸡兔同笼的简便算法
最简单的算法
(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数
(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)
让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。
假设法
假设全是鸡:2×35=70(只)
鸡脚比总脚数少:94-70=24 (只)
兔:24÷(4-2)=12 (只)
鸡:35-12=23(只)
假设法(通俗)
假设鸡和兔子都抬起一只脚,笼中站立的脚:
94-35=59(只)
然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:
59-35=24(只)
兔:
24÷2=12(只)
鸡:
35-12=23(只)
假设全是兔:4×35=140(只)
如果假设全是兔那么兔脚比总数多:140-94=46(只)
鸡:46÷(4-2)=23(只)
兔:35-23=12(只)
方程法
1、一元一次方程
设兔有x只,则鸡有(35-x)只.
4x+2(35-x)=94
4x+70-2x=94
2x=94-70
2x=24
x=24÷2
x=12
35-12=23(只)
或 设鸡有x只,则兔有(35-x)只.
2x+4(35-x)=94
2x+140-4x=94
2x=46
x=23
35-23=12(只)
答:兔子有12只,鸡有23只.
注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些.
2、二元一次方程
设鸡有x只,兔有y只.
x+y=35
2x+4y=94
(x+y=35)×2=2x+2y=70
(2x+2y=70)-(2x+4y=94)=(2y=24)
y=12
把y=12代入(x+y=35)
x+12=35
x=35-12(只)
x=23(只).
答:兔子有12只,鸡有23只.抬腿法
方法一
假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
方法二
假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。
方法三
我们可以先让兔子都抬起2只脚,那么现在就有35×2=70只脚,现在的脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。
4. 鸡兔同笼怎么算最简单
解决这道问题所用到的公式有:
公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
公式3:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
公式4:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2兔的只数=鸡兔总只数-鸡的只数
公式5:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2鸡的只数=鸡兔总只数-兔总只数
公式6:4x+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)
计算这道题目最简单的方法是:
(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数
(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)
让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的2只脚,再÷2就是兔子数。
5. 鸡兔同笼最简单的公式是什么
鸡兔同笼是小学低年级作为奥数在讲,五六年级就是正常题型了,但还是有很多同学学不会,那么鸡兔同笼最简单的公式是什么呢?
1、 兔子有几只=(总脚数-总数×鸡的脚数)÷(兔的脚数-鸡的脚数)。
2、 较为简单的计算方式:(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数。(94-35×2)÷2=12(兔子数)总头数(35)-兔子数(12)=鸡数(23)。
3、 解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。
以上的就是关于鸡兔同笼最简单的公式是什么的内容介绍了。
6. 鸡兔同笼最简单的公式
兔子有几只=(总脚数-总数×鸡的脚数)÷(兔的脚数-鸡的脚数)。
较为简单的计算方式:
(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数
(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)
解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。
抬腿法:
方法一
假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
方法二
假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。
方法三
我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。
7. 鸡兔同笼最简单的公式是什么
假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2);假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)。假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2);假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)。
鸡兔同笼公式:
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数;总只数-鸡的只数=兔的只数。
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数;总只数-兔的只数=鸡的只数。
解法3:总脚数÷2—总头数=兔的只数;总只数—兔的只数=鸡的只数。
先假设它们全是兔,于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少,每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡。我们称这种解题方法为假设法。
公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数;总只数-鸡的只数=兔的只数。
公式2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数;总只数-兔的只数=鸡的只数。
公式3:总脚数÷2—总头数=兔的只数;总只数—兔的只数=鸡的只数。
公式4:鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2;兔的只数=鸡兔总只数-鸡的只数。
公式5:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数。
公式6:(头数x4-实际脚数)÷2=鸡。
公式7 :4×+2(总数-x)=总脚数(x=兔,总数-x=鸡数,用于方程)
公式8:鸡的只数:兔子的只数=兔子的脚数-(总脚数÷总只数):(总脚数÷总只数)-鸡的脚数。
8. 鸡兔同笼的简便算法
鸡兔同笼的简便算法:假设法。
举例如下:
有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。求笼中鸡和兔的只数。
1、假设全是鸡:2×35=70(只)
鸡脚比总脚数少:94-70=24 (只)
兔子比鸡多的脚数:4-2=2(只)
兔子的只数:24÷2=12 (只)
鸡的只数:35-12=23(只)
2、假设全是兔子:4×35=140(只)
兔子脚比总数多:140-94=46(只)
兔子比鸡多的脚数:4-2=2(只)
鸡的只数:46÷2=23(只)
兔子的只数:35-23=12(只)
(8)鸡兔同笼如何用简便方法扩展阅读:
鸡兔同笼的公式:
1、公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数
总只数-鸡的只数=兔的只数
2、公式2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数
总只数-兔的只数=鸡的只数
3、公式3:总脚数÷2-总头数=兔的只数
总只数—兔的只数=鸡的只数
4、公式4:兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
9. 鸡兔同笼最简解法
鸡兔同笼最简便的方法就是:
兔:总脚数÷2-总头数
再求鸡数是:总头数-兔数
先验算几题,认为有帮助的请采纳!
10. 要解决鸡兔同笼问题最简单的方法是什么
有四种方法可以解决:
1、二年级的方法:列表法。
题目里说鸡兔共8只,兔为0只,算出脚的数量。如果不对再设鸡为7只,兔为1只,算出脚的数量,以此类推。
2、四年级的方法:假设法。
这个是大多数童鞋的钟爱。可以先假设笼子里全部都是鸡,算出脚数,肯定比实际数量少一些,为什么呢?因为有些兔子被咱误以为是鸡,少了两条脚,把那些与实际数量相差的数去除以(4-2),也就是兔比鸡多的脚数,算出来的就是兔的只数;如果假设全都是兔,算出来的就是鸡。所以我们总结出了一句话:假鸡得兔,假兔得鸡。只要记住这句话,写答的时候就不会写错了!
3、五年级的方法:方程。
设兔为x只,则鸡为(8-x)只。列出方程后,解一下就好了!
4、x年级的方法:假设法Ⅱ。
先设鸡抬起一只脚,兔抬起一只脚,就还剩26÷2=13(只)。笼子里只要有一只兔,脚的数量就比头数多1,就多了13-8=5(只),是兔的只数,那么鸡就是8-5=3(只)。